OŚWIADCZENIE

Producent	LENNOX Sp. z o.o.	oświadcza, iż pompy ciepła
1)	LV-HPM04-I5T	
2)	Oznaczenie/typ/identyfikator modelu LV-HPM04EH30-I5T	
3)	Oznaczenie/typ/identyfikator modelu LV-HPM06-I5T	
4)	Oznaczenie/typ/identyfikator modelu LV-HPM06EH30-I5T	
5)	Oznaczenie/typ/identyfikator modelu	
,	Oznaczenie/typ/identyfikator modelu	

Należą do jednego podtypu w danym typoszeregu i spełniają łącznie następujące warunki:

- identyczna konstrukcja obiegu chłodniczego, ten sam czynnik chłodniczy/roboczy;
- ten sam producent, typ i liczba sprężarek;
- ten sam typ elementu rozprężnego;
- ten sam typ skraplacza;
- ten sam typ parownika;
- ten sam typ procesu odszraniania;
- ten sam sterownik i zasada sterowania wydajnością;
- ten sam producent, typ i liczba wentylatorów parownika (w przypadku powietrznych pomp ciepła) i zasada sterowania wydajnością (stała, zmienna lub stopniowana regulacja prędkości obrotowej);
- urządzenia z i bez zaworu czterodrogowego nie mogą być zaliczone do tego samego typoszeregu.

LENNOX POLSKA Sp. z o.o. uł. Wybrzeże Gdyńskie 6a 01-531 Warsżawa tel. (22) 58 48 610, fax (22) 58 48 600 NIP: 118-15-59-868, REGON: 016374426

Warszawa, 2024.06.21

Miejscowość, data

TEST REPORT

Report no.:

300-KLAB-23-040-19

DANISH TECHNOLOGICAL INSTITUTE

Teknologiparken Kongsvang Allé 29 DK-8000 Aarhus C +45 72 20 20 00 Info@teknologisk.dk www.teknologisk.dk

Page 1 of 43 Init: KAMA/RTHI File no.: 225959 Enclosures: 2

Customer: Company: GD MIDEA HEATING & VENTILATING EQUIPMENT CO., LTD.

Address: Penglai Industry Road, Beijiao

City: Shunde, Foshan, Guangdong, 528311, China

Tel.: +86 13902810522

Component: Brand: Midea

Type: Air to water heat pump (mono block)

Model: MHC-V6W/D2N8-B

Series no.: 341H09752012A250100012

Prod. year: Outdoor unit: N/A

Dates: Teste period: January 2024

Brand name: Brand: LENNOX

Type: Air to water heat pump (mono block)

Model: LV-HPM06-I5T

Procedures See objective (page 2) for list of standards.

Remarks: The unit was delivered by the customer. The installation and test settings were done according

to the manufacturer's instructions. Between each test condition Midea has been changing various parameters like compressor speed, expansion valve, fan speed, pump speed, defrost time, heating time. The report for the tested unit is named 300-KLAB-23-040 issued

2024.03.12 Also see appendix 2.

Terms: This test was conducted under accreditation in accordance with international requirements

(ISO/IEC 17025:2017) and in accordance with the General Terms and Conditions of Danish Technological Institute. The test results solely apply to the tested item. This test report may be quoted in extract only if Danish Technological Institute has granted its written

consent.

The customer may not mention or refer to Danish Technological Institute or Danish Technological Institute's employees for advertising or marketing purposes unless Danish

Technological Institute has granted its written consent in each case.

Division/Centre: Danish Technological Institute Date: 2024.05.16

Energy and Climate

Heat Pump Laboratory, Aarhus

Kamalathasan Arumugam

B.Sc. Engineer

Signature:

Co-reader:

Rasmus Thisgaard B.TecMan & MarEng

Page 2 of 43 300-KLAB-23-040-19

Heat pumps of identical design

According to GD MIDEA HEATING & VENTILATING EQUIPMENT CO., LTD. The heat pumps listed in the table below are considered identical with the tested unit. They have identical:

- a. heating capacity
- b. refrigerant cycle (incl. refrigerant mass)
- c. heat source and sink medium
- d. main components / operating principle and control strategy
- e. same outdoor casing

Brand	Model
Midea	MHC-V6W/D2N8-B
Midea	MHC-V6W/D2N8-BE30
Midea	MHC-V6W/D2N8-BE30
Midea	MHC-V6W/D2N8-BE60
Midea	MHC-V6W/D2N8-BER90
Midea	MHC-V6W/D2N8-B1
Midea	MHC-V6W/D2N8-B1E30
Midea	MHC-V6W/D2N8-B1E60
Midea	MHC-V6W/D2N8-B1ER90
Midea	MHC-V6W/D2N8-B2
Midea	MHC-V6W/D2N8-B2E30
Midea	MHC-V6W/D2N8-B2E60
Midea	MHC-V6W/D2N8-B2ER90

Page 3 of 43 300-KLAB-23-040-19

Objective

The objective of this report is to document the following:

The Seasonal Coefficient of Performance (SCOP) at low and medium temperature application for average climate according to EN 14825: 2022.

In order to calculate the SCOP, tests were carried out at the part load conditions stated in the tables on page 5 and 6.

SCOP part load test in conditions SCOP_c and SCOP_{B&F} at low temperature application for warmer climate according to EN 14825: 2022.

SCOP part load test conditions SCOP_A and SCOP_{G&F} at low temperature application for colder climate according to EN 14825: 2022.

COP test standard rating conditions (heating mode) at low and medium temperature according to EN 14511: 2022.

Operating requirements according to EN 14511-4: 2022

- 4.2.1 Starting and operating tests
- 4.5 Shutting of the heat transfer medium flows
- 4.6 Complete power supply failure

Sound power measurements according to EN 12102-1:2022.

Page 4 of 43 300-KLAB-23-040-19

Contents:

Test conditions	5
SCOP test conditions for low temperature - EN 14825	5
SCOP test conditions for medium temperature – EN 14825	6
COP test conditions - low temperature - EN 14511	7
COP test conditions - medium temperature - EN 14511	7
Test conditions for operating requirements - EN 14511-4	7
Test conditions for shutting off the heat transfer medium - EN 14511-4	8
Test conditions for complete power supply failure - EN 14511-4	8
Test conditions for sound power measurements – EN 12102-1	8
Test results	9
Test results of SCOP test at low temperature - heating season average - EN 14825	9
Test results of SCOP test at medium temperature - heating season average - EN 14825	10
Test results for warmer climate, low temperature according to EN14825	11
Test results for colder climate, low temperature according to EN14825	11
COP test results - low temperature - EN 14511	11
COP test results - medium temperature - EN 14511	11
Test results of sound power measurements – EN 12102	12
Photos	13
SCOP - detailed calculation	14
Detailed SCOP calculation of low temperature and average climate conditions - EN 14825	14
Detailed SCOP calculation of medium temperature and average climate conditions - EN 14825	16
Detailed test results	18
Detailed SCOP part load test results - low temperature application - average climate - EN 14825	18
Detailed SCOP part load test results - medium temperature application - average climate - EN 148	325
Detailed SCOP part load test results - low temperature application - warmer climate - EN 14825	
Detailed SCOP part load test results - low temperature application - colder climate - EN 14825	30
Detailed COP test results - low temperature - EN 14511	32
Detailed COP test results - medium temperature - EN 14511	33
Detailed test results of sound power measurement - Test N#1	34
Detailed test results of sound power measurement – Test N#2	35
Detailed test results of sound power measurement – Test N#3	36
Detailed test results of sound power measurement – Test N# 4	37
Appendix 1	38
Appendix 2	12

Page 5 of 43 300-KLAB-23-040-19

Test conditions

SCOP test conditions for low temperature - EN 14825

Part load conditions for reference SCOP and reference SCOPon calculation of air to water units for low temperature application for the reference heating season;

"A" = average, "W" = warmer, and "C" = colder.

		Part load ratio				Outdoor heat exchanger		Indoor heat exchanger			
	Part load ratio in %			Dry (wet) bulb temperature °C		Fixed outlet °C	Variable outlet ^d °C				
	Formula	Average	Warmer	Colder	Outdoor air	Exhaust air	All climates	Average	Warmer	Colder	
A	(-7 - 16) / (T _{designh} 16)	88,46	n.a.	60,53	-7(-8)	20(12)	a / 35	a/34	n.a.	a/30	
В	(+2 - 16) / (T _{designh} - 16)	53,85	100,00	36,84	2(1)	20(12)	a / 35	a / 30	≈/35	-/27	
С	(+7 - 16) / (T _{designh} 16)	34,62	64,29	23,68	7(6)	20(12)	ª/35	a / 27	a/31	*/25	
D	(+12 - 16) / (T _{designh} - 16)	15,38	28,57	10,53	12(11)	20(12)	4/35	a / 24	ª/26	a/24	
E	(TOL	e - 16) / (T	designh – 16)		TOLe	20(12)	4/35	2/6	a/b	a / b	
F	(Tbiv	- 16) / (Td	esignh - 16)		$T_{ m biv}$	20(12)	4/35	a/c	2/0	a/c	
G	(-15 - 16) / (T _{designh} - 16)	n.a.	n.a.	81,58	-15	20(12)	a / 35	n.a.	n.a.	*/32	

Additional information

Climate	T _{designh} [°C]	Tbivalent [°C]	TOL [°C]	Outlet temperature	Flow rate
Average	-10	-7	-10	Variable	Variable
Warmer	2	7	2	Variable	Variable
Colder	-22	-15	-22	Variable	Variable

Page 6 of 43 300-KLAB-23-040-19

SCOP test conditions for medium temperature - EN 14825

Part load conditions for reference SCOP and reference SCOPon calculation of air to water units for medium temperature application for the reference heating season;

"A" = average, "W" = warmer, and "C" = colder.

					-	or heat anger	Inc	door heat	exchange	r
	Part load ratio in %			Dry (wet) bulb temperature °C		Fixed outlet °C	Variable outlet ^d °C			
	Formula	Average	Warmer	Colder	Outdoor air	Exhaust air	All climates	Average	Warmer	Colder
A	(-7 - 16) / (T _{designh} - 16)	88,46	n.a.	60,53	-7(-8)	20(12)	ª / 55	*/52	n.a.	*/44
В	(+2 - 16) / (T _{designh} - 16)	53,85	100	36,84	2(1)	20(12)	ª / 55	*/42	*/55	*/37
C	(+7 - 16) / (T _{designh} - 16)	34,62	64,29	23,68	7(6)	20(12)	ª / 55	*/36	*/46	*/32
D	(+12 - 16) / (T _{designh} - 16)	15,38	28,57	10,53	12(11)	20(12)	a / 55	*/30	a / 34	a / 28
E	(TOLe - 16) / (Tdesignh - 16)			TOL ^e	20(12)	* / 55	a / b	a/b	a/b	
F	(Thiv	(Tbiv - 16) / (Tdesignh - 16)		$T_{\rm biv}$	20(12)	a / 55	2/5	1/5	2/0	
G	(-15 - 16) / (Tdesignh - 16)	n.a.	n.a.	81,58	-15	20(12)	a / 55	n.a.	n.a.	*/49

Additional information

Climate	Tdesignh [°C]	Tbivalent [°C]	TOL [°C]	Outlet temperature	Flow rate
Average	-10	-7	-10	Variable	Variable

Page 7 of 43 300-KLAB-23-040-19

COP test conditions - low temperature - EN 14511

	Heats	source	Heat sink		
N [#]	I nlet dry bulb temperature (°C)	Inlet wet bulb temperature (°C)	Inlet temperature (°C)	Outlet temperature (°C)	
1 ^S	7	6	30	35	

S: Standard rating condition

COP test conditions - medium temperature - EN 14511

	Heat s	source	Heat sink		
N [#]	I nlet dry bulb temperature (°C)	dry bulb wet bulb temperature		Outlet temperature (°C)	
1 ^S	7	6	47	55	

S: Standard rating condition

Test conditions for operating requirements - EN 14511-4

	Heat source		Heat sink			
N [#]	I nlet dry bulb temperature (°C)	Inlet wet bulb temperature (°C)	Inlet temperature (°C)	Water flow rate at indoor heat exchanger	Test	
1	-25	-	14	415 L/h	Starting	
2	-25	-	35	415 L/h	Operating	

Page 8 of 43 300-KLAB-23-040-19

Test conditions for shutting off the heat transfer medium - EN 14511-4

	Heat s	source	Неа	Heat exchanger	
N# I nlet dry bulb temperature (°C)		Inlet wet bulb temperature (°C)	Inlet temperature (°C)		
1	7	6	47	55	Indoor
2	7	6	47	55	Outdoor

Test conditions for complete power supply failure - EN 14511-4

	Heat source	ce	Heat sink		
N [#]	Inlet dry bulb temperature (°C) Inlet wet bulb temperature (°C) (°C)		Inlet temperature Outlet temperature (°C) (°C)		
1	7	6	47	55	

Test conditions for sound power measurements - EN 12102-1

N [#]	Test co	ndition	Heat pump setting			
	Outdoor heat exchanger (dry bulb/ wet bulb) (°C)	Indoor heat exchanger (inlet/ outlet) (°C)	Compressor speed (Hz)	Fan speed outdoor (rpm)	Heating capacity (kW)	Power input (kW)
1 ^F	7/6	30/35	66	550	6.46	1.23
2 ^P	7/6	30/35	30	400	3.06	0.57
3 ^F	7/6	47/55	66	550	6.13	2.06
4 ^E	7/6	47/55	38	400	3.19	1.14

F) Full load, P) part load, E) ErP labelling

Page 9 of 43 300-KLAB-23-040-19

Test results

Test results of SCOP test at low temperature - heating season average - EN 14825

Model (Outdoor)	MHC-V6W/D2N8-B
Air-to-water heat pump mono bloc	Υ
Low-temperature heat pump	N
Equipped with supplementary heater	Υ
Heat pump combination heater	N
Reversible	Υ

Rated heat output1)		P _{rated}		6.8 [kW]
Seasonal space heating energy efficiency		η _s		192.8 [%]
		SCOP		4.89 [-]
	Average Climate	Tj=-15 °C	Pdh	- [kW]
	-	Tj=-7 °C	Pdh	5.74 [kW]
Measured capacity for	Low	Tj=2 °C	Pdh	3.72 [kW]
heating for part load at	temperature	Tj=7 °C	Pdh	3.21 [kW]
outdoor temperature Tj	application	Tj=12 °C	Pdh	3.76 [kW]
		Tj=bivalent temperature	Pdh	5.74 [kW]
		Tj=operation limit	Pdh	5.39 [kW]
		, ,	 	
	Average Climate	Tj=-15 °C	COPd	- [-]
	-	Tj=-7 °C	COPd	3.02 [-]
Measured coefficient of	Low	Tj=2 °C	COPd	4.76 [-]
performance at outdoor	temperature	Tj=7 °C	COPd	6.79 [-]
temperature Tj	application	Tj=12 °C	COPd	8.85 [-]
		Tj=bivalent temperature	COPd	3.02 [-]
		Tj=operation limit	COPd	2.68 [-]
			-	
Bivalent temperature		Tbivalent		-7 [°C]
Operation limit		TOL		-10 [°C]
temperatures		WTOL		- [°C]
Degradation coefficient		Cdh		0.95 [-]
				•
		Off mode	P _{OFF}	0.015 [kW]
Power consumption in		Thermostat-off mode	P _{TO}	0.020 [kW]
modes other than active		Standby mode	P _{SB}	0.015 [kW]
mode		Crankcase heater mode ²	P _{CK}	0.015 [kW]
		Rated heat output		1.41 [kW]
Supplementary heater ¹⁾		Rated heat output P _{SUP} Type of energy input		Electrical
		Trype or energy input		Liectrical
		Capacity control		Variable
		Water flow control		Variable
Other items		Water flow control Water flow rate		- Variable
		Annual energy consumption	Q _{HE}	2870 [kWh
		/ imaar chergy consumption	YHE .	2070 [KWI

¹⁾For heat pump space heaters and heat pump combination heaters, the rated heat output, Prated, is equal to the design load for heating, Pdesignh, and the rated heat output of a supplementary heater, Psup, is equal to the supplementary capacity for heating, sup(Tj).

²⁾ For SCOP calculation the value PCK - PSB is used. See page 15

Page 10 of 43 300-KLAB-23-040-19

Test results of SCOP test at medium temperature - heating season average - EN 14825

Model (Outdoor)	MHC-V6W/D2N8-B
Air-to-water heat pump mono bloc	Υ
Low-temperature heat pump	N
Equipped with supplementary heater	Υ
Heat pump combination heater	N
Reversible	Υ

Reversible			Υ	
Rated heat output ¹⁾		P _{rated}		5.7 [kW]
Seasonal space heating energy efficiency		η _s		140.4 [%]
		SCOP		3.58 [-]
				•
	Average Climate	Tj=-15 °C	Pdh	- [kW]
	-	Tj=-7 °C	Pdh	5.18 [kW
Measured capacity for	Medium	Tj=2 °C	Pdh	3.13 [kW
heating for part load at	temperature	Tj=7 °C	Pdh	2.94 [kW
outdoor temperature Tj	application	Tj=12 °C	Pdh	3.59 [kW
		Tj=bivalent temperature	Pdh	5.18 [kW
		Tj=operation limit	Pdh	4.49 [kW
	Average Climate	-	COPd	- [-]
	-	Tj=-7 °C	COPd	2.13 [-]
Measured coefficient of	Medium	Tj=2 °C	COPd	3.58 [-]
performance at outdoor	temperature	Tj=7 °C	COPd	4.74 [-]
temperature Tj	application	Tj=12 °C	COPd	6.39 [-]
		Tj=bivalent temperature	COPd	2.13 [-]
		Tj=operation limit	COPd	1.83 [-]
Bivalent temperature		Tbivalent		-7 [°C]
Operation limit		TOL		-10 [°C]
temperatures		WTOL		- [°C]
Degradation coefficient		Cdh		0.96 [-]
		I		
Power consumption in		Off mode	P _{OFF}	0.015 [kW
modes other than active		Thermostat-off mode	P _{TO}	0.020 [kW
mode		Standby mode	P _{SB}	0.015 [kW
		Crankcase heater mode ²⁾	P _{CK}	0.015 [kW
C		Rated heat output	P _{SUP}	1.21 [kW
Supplementary heater ¹⁾		Type of energy input		Electrical
		Capacity control		Variable
Other items		Water flow control		Variable
Other Items		Water flow rate		-

	Capacity control	Variable	
O.H '4	Water flow control		Variable
Other items	Water flow rate		-
	Annual energy consumption	Q _{HE}	3286 [kWh]

¹⁰For heat pump space heaters and heat pump combination heaters, the rated heat output, Prated, is equal to the design load for heating, Pdesignh, and the rated heat output of a supplementary heater, Psup, is equal to the supplementary capacity for heating, sup(Tj).

") For SCOP calculation the value PCK - PSB is used. See page 17

Page 11 of 43 300-KLAB-23-040-19

Test results for warmer climate, low temperature according to EN14825

N°	Test condition	Heating capacity [kW]	СОР
1	В	5.895	3.817
2	Tbivalent C and F	3.994	6.027

Test results for colder climate, low temperature according to EN14825

N°	Test condition	Heating capacity [kW]	СОР
1	А	3.392	3.736
2	Tbivalent F & G	4.526	2.365

COP test results - low temperature - EN 14511

N [#]	Test conditions	Heating capacity [kW]	СОР
1	A7/W35	6.462	4.996

COP test results - medium temperature - EN 14511

N [#]	Test conditions	Heating capacity [kW]	COP
1	A7/W55	6.127	2.979

Page 12 of 43 300-KLAB-23-040-19

Test results of sound power measurements - EN 12102

N [#]	Test conditions	Sound power level LW(A) [dB re 1pW]	Uncertainty $m{\sigma}_{ ext{tot}}$
1 ^F	A7/W35	57.1	1.6
2 ^P	A7/W35	48.9	1.6
3 ^F	A7/W55	60.1	1.6
4 ^E	A7/55	50.7	1.6

F) Full load, P) part load, E) ErP labelling

The A-weighted total sound power level is determined for the measured frequency range from 100 Hz to 10 kHz. For the calculation of uncertainty, see appendix 1.

The sound power measurements are carried out by Kamalathasan Arumugam (KAMA) and coread by Patrick Glibert (PGL), Danish Technological Institute.

Page 13 of 43 300-KLAB-23-040-19

Photos

Rating plate (outdoor unit)

CEE	K A	041-8007-03		
MONOBLOC	HEAT PU	AP .		
MODEL	MHC-V6V	V/D2N8-B		
COOLING CAPACITY/EER @ A35W18	6.50kW /	4.80		
HEATING CAPACITY/COP @ A7W35	6.35kW /	4.95		
POWER SOURCE	220-240V	~ 50Hz		
RATED INPUT	2700W			
RATED WATER PRESSURE	0.1-0.3MF	Pa .		
NET WEIGHT	86kg			
REFRIGERANT	R32/1400	g		
GWP	675			
EQUIVALENT CO2	0.95t			
EXCESSIVE OPERATING	HIGH	4.3MPa		
PRESSURE	LOW	2.6MPa		
MAXIMUM ALLOWABLE I	PRESSURE	4.3MPa		
OUTDOOR RESISTANC	E CLASS	IP24		
Hermetically sealed equipment contains				
fluorinated greenhouse gases				
Midea				
GD Midea Heatii Equipmen (Penglai Industry Road, Beljiao, Shun	t Co.,Ltd.			

Outdoor unit

Page 14 of 43 300-KLAB-23-040-19

SCOP - detailed calculation

Detailed SCOP calculation of low temperature and average climate conditions – EN 14825

Calculation of reference SCOP

$$SCOP = \frac{P_{designh} \times H_{he}}{\frac{P_{designh} \times H_{he}}{SCOP_{on}} + H_{TO} \times P_{TO} + H_{SB} \times P_{SB} + H_{CK} \times P_{CK} + H_{OFF} \times P_{OFF}}$$

Where

P_{design} = Heating load of the building at design temperature, kW

H_{he} = Number of equivalent heating hours, 2066 h

 H_{TO} , H_{SB} , H_{CK} , H_{OFF} = Number of hours for which the unit is considered to work in thermostat off

mode, standby mode, crankcase heater mode and off mode, h, respectively

 P_{TO} , P_{SB} , P_{CK} , P_{OFF} = Electricity consumption during thermostat off mode, standby mode, crankcase

heater mode and off mode, kW, respectively

Data for SCOP

	Outdoor tempera ture	Part load	Part load	Declared capacity	Declared COP	cdh	CR	COPbin
	[°C]	[%]	[kW]	[kW]	[-]	[-]	[-]	[-]
Α	-7	88	6.02	5.74	3.02	0.99	1.00	3.02
В	2	54	3.66	3.72	4.76	0.97	1.00	4.76
С	7	35	2.35	3.21	6.79	0.96	0.73	6.68
D	12	15	1.05	3.76	8.85	0.95	0.28	7.90
E	-10	100	6.80	5.39	2.68	0.99	1.00	2.68
F - BIV	-7	88	6.02	5.74	3.02	0.99	1.00	3.02

Energy consumption for thermostat off, standby, off mode, crankcase heater mode

	Hours [h]	Power input [kW]	Applied to SCOP calculation [kW]	Energy consumptio n [kWh]
Off mode	0	0.0149	0.0149	0
Thermostat off	178	0.0197	0.0197	3.5066
Standby	0	0.0149	0.0149	0
Crankcase heater	178	0.0149	0	0

Page 15 of 43 300-KLAB-23-040-19

Calculation Bin for SCOPon

		Outdoor temperature [°C]	Hours [h]	Heat load [kW]	Heat load covered by heat pump [kW]	Electrical back up heater [kW]	Annual backup heater energy input [kWh]	COPbin	Annual heating deman d		Net annual heating capacit y [kWh]	Net annual power input [kWh]
E	21	-10		6.80	5,39			2.68			5.39	2.01
	22	-9	25	6.54	5.51	1.03	25.77	2.80	163.46	75.03	137.69	49.26
	23	-8	23	6.28	5.62	0.65	15.03	2.91	144.37	59.54	129.34	44.51
A / F - BIV	24	-7	24	6.02	5.74	0.00	0.00	3.02	144.37	47.85	144.37	47.85
	25	-6	27	5.75	5.51	0.00	0.00	3.21	155.35	48.39	155.35	48.39
	26	-5	68	5.49	5.28	0.00	0.00	3,40	373.48	109.73	373.48	109.73
	27	-4	91	5.23	5.05	0.00	0.00	3.60	476.00	132.33	476.00	132,33
	28	-3	89	4.97	4.82	0.00	0.00	3.79	442.26	116.68	442.26	116.68
	29	-2	165	4.71	4.58	0.00	0.00	3.98	776.77	194.99	776.77	194.99
	30	-1	173	4.45	4.35				769.18		769.18	184.15
	31	0	240	4.18	4.12				1004.31	229.80	1004.31	229.80
	32	1	280	3.92	3.89							240.70
В	33	2		3.66	3.66				1171.69		1171.69	246.31
	34	3	357	3.40	3.40							236.03
	35	4	356		3.14							202.12
	36	5	303	2.88	2.88				871.71	147.41	871.71	147.41
	37	6	330	2.62	2.62				863.08		863.08	137.02
С	38	7		2.35	2,35				767.35		767.35	114.80
	39	8	348	2.09	2.09				728.12		728.12	105.11
	40	9	335	1.83	1.83				613.31	85.54	613.31	85.54
	41	10	315	1.57	1.57				494.31	66.68	494.31	66.68
	42	11	215	1.31	1.31				281.15		281.15	36.73
D	43	12	169	1.05	1.05				176.80		176.80	22.38
	44	13	151	0.78	0.78				118.48		118.48	14.55
	45	14	105	0.52	0.52				54.92			6.55
	46	15	74	0.26	0.26	0.00	0.00	8.63	19.35	2.24	19.35	2.24

SUM	14046.18	2866.09 14003.97	2823.88
SCOPon		4.90 SCOPnet	4.96

Page 16 of 43 300-KLAB-23-040-19

Detailed SCOP calculation of medium temperature and average climate conditions – EN 14825

Calculation of reference SCOP

$$SCOP = \frac{P_{designh} \times H_{he}}{SCOP_{on}} + H_{TO} \times P_{TO} + H_{SB} \times P_{SE} + H_{CK} \times P_{CK} + H_{OFF} \times P_{OFF}$$

Where

P_{design} = Heating load of the building at design temperature, kW

 $H_{he} =$ Number of equivalent heating hours, 2066 h

 H_{TO} , H_{SB} , H_{CK} , H_{OFF} = Number of hours for which the unit is considered to work in thermostat off

mode, standby mode, crankcase heater mode and off mode, h, respectively

 P_{TO} , P_{SB} , P_{CK} , P_{OFF} = Electricity consumption during thermostat off mode, standby mode, crankcase

heater mode and off mode, kW, respectively

Data for SCOP

	Outdoor tempera ture	Part load ratio		Declared capacity	Declared COP	cdh	CR	COPbin
	[°C]	[%]	[kW]	[kW]	[-]	[-]	[-]	[-]
A	-7	88	5.04	5.18	2.13	0.99	1.00	2.13
В	2	54	3.07	3.13	3.58	0.98	1.00	3.58
С	7	35	1.97	2.94	4.74	0.97	0.67	4.67
D	12	15	0.88	3.59	6.39	0.96	0.24	5.77
E	-10	100	5.70	4.49	1.83	0.99	1.00	1.83
F - BIV	-7	88	5.04	5.18	2.13	0.99	1.00	2.13

Energy consumption for thermostat off, standby, off mode, crankcase heater mode

	Hours [h]	Power input [kW]	Applied to SCOP calculation [kW]	Energy consumptio n [kWh]
Off mode	0	0.0149	0.0149	0
Thermostat off	178	0.0197	0.0197	3.5066
Standby	0	0.0149	0.0149	0
Crankcase heater	178	0.0149	0	0

Page 17 of 43 300-KLAB-23-040-19

Calculation Bin for SCOPon

	Bin	Outdoor temperature [°C]	Hours [h]	load	Heat load covered by heat pump [kW]	Electrical back up heater [kW]	Annual backup heater energy input [kWh]	COPbin	Annual heating deman d [kWh]	Annual energy input [kWh]	capacit y	Net annual power input [kWh]
E	21	-10	1	5.70	4.49	1.21	1.21	1.83	5.70	3.66	4.49	2.46
	22	-9	25	5.48	4.67	0.81	20.15	1.93	137.02	80.72	116.87	60.57
	23	-8	23	5.26	4.86	0.40	9.27	2.03	121.02	64.33	111.75	55.06
A/F-BIV	24	-7	24	5.04	5.04	0.00	0.00	2.13	121.02	56.81	121.02	56.81
	25	-6	27	4.82	4.82	0.00	0.00	2.29	130.22	56.84	130.22	56.84
	26	-5	68	4.60	4.60	0.00	0.00	2.45	313.06	127.69	313.06	127.69
	27	-4	91	4.38	4.38	0.00	0.00	2.61	399.00	152.72	399.00	152.72
	28		89	4.17	4.17	0.00	0.00	2.77	370.72	133.66	370.72	133.66
	29		165	3.95	3.95	0.00	0.00	2.93	651.12	221.89	651.12	221.89
	30		173	3.73	3.73	0.00	0.00	3.10	644.76	208.30	644.76	208.30
	31	0	240	3.51	3.51	0.00	0.00	3.26	841.85	258.53	841.85	258.53
	32		280	3.29	3.29	0.00		3.42	920.77	269.46	920.77	269.46
В	33		320 357	3.07 2.85	3.07 2.85	0.00		3.58	982.15 1017.45		982.15	274.50
	34 35		357	2.85	2.85	0.00	0.00	3.80 4.01	936.55	268.03 233.31	1017.45 936.55	268.03 233.31
	36		303	2.03	2.03	0.00	0.00	4.01	730.70	172.65	730.70	172.65
	37		330	2.19	2.19	0.00	0.00	4.45	723.46	162.56	723.46	162.56
С	38		326	1.97	1.97	0.00	0.00	4.67	643.22	137.78	643.22	137.78
	39	,		1.75	1.75			4.89			610,34	124.87
	40		335	1.53	1.53	0.00	0.00	5.11	514.10	100.66	514.10	100.66
	41	10	315	1.32	1.32	0.00	0.00	5.33	414.35	77.79	414.35	77.79
	42	11	215	1.10	1.10	0.00	0.00	5.55	235.67	42.49	235.67	42.49
D	43	12	169	0.88	0.88	0.00	0.00	5.77	148.20	25.70	148.20	25.70
	44	13	151	0.66	0.66	0.00	0.00	5.98	99.31	16.59	99.31	16.59
	45	14	105	0.44	0.44	0.00	0.00	6.20	46.04	7.42	46.04	7.42
	46	15	74	0.22	0.22	0.00	0.00	6.42	16.22	2.53	16.22	2.53

SUM	11774.01	3281.51 11743.38	3250.88
SCOPon		3.59 SCOPnet	3.61

Page 18 of 43 300-KLAB-23-040-19

Detailed test results

Detailed SCOP part load test results - low temperature application - average climate - EN 14825

Detailed result for 'EN14825:2022' Average Low (A and F)	A -7 /W34	
Tested according to:	EN14511:2022 and EN14825:20	022
Climate zone:	Avera	age
Temperature application:	L	.ow
Condition name:	A an	ıd F
Condition temperature:	°C	-7
Part load:	% 8	88%
Chosen Tbivalent	°C	-7
Tdesign	°C	-10
Pdesign	kW 6	.80
Heating demand:	kW 6	.02
CR:	-	1.0
Minimum flow reached:	-	No
Measurement type:	Transie	ent
Integrated circulation pump:	,	Yes
Included corrections (Final result)		
Heating capacity	kW 5.7	739
СОР	- 3.0	17
Power consumption	kW 1.9	902
Measured		
Heating capacity	kW 5.7	746
COP	- 3.0	007
Power consumption		911
During heating		
Air temperature dry bulb	°C -7.	.00
Air temperature wet bulb	°C -8.	.12
Inlet temperature	°C 29.	.02
Outlet temperature		.99
Outlet temperature (Time averaged)		.99
outer temperature (Time averaged)		
Circulation pump		
Measured: Static differential pressure, liquid pump	Pa 37	774
Calculated Hydraulic power	w	1
Calculated global efficiency	η 0).13
Calculated Capacity correction	w	8
Calculated Power correction	W	9
Water Flow	m³/s 0.0002	295

Page 19 of 43 300-KLAB-23-040-19

Detailed result for 'EN14825:2022' Average Low (B) A 2 /W30		
Tested according to:	EN14511:2022 and E	N14825:2022
Climate zone:		Average
Temperature application:		Low
Condition name:		В
Condition temperature:	°C	2
Part load:	%	54%
Chosen Tbivalent	°C	-7
Tdesign	°C	-10
Pdesign	kW	6.80
Heating demand:	kW	3.66
CR:	-	1.0
Minimum flow reached:	-	No
Measurement type:		Transient
Integrated circulation pump:		Yes
Included corrections (Final result)		
Heating capacity	kW	3.716
СОР	-	4.757
Power consumption	kW	0.781
Measured		
Heating capacity	kW	3.724
COP	-	4.709
Power consumption	kW	0.791
During heating		
Air temperature dry bulb	°C	2.09
Air temperature wet bulb	°C	0.95
Inlet temperature	°C	25.00
Outlet temperature	°C	29.86
Outlet temperature (Time averaged)	°C	29.86
outlet temperature (Time averaged)	C	25.00
Circulation pump		
Measured: Static differential pressure, liquid pump	Pa	6441
Calculated Hydraulic power	W	1
Calculated global efficiency		0.13
Calculated Capacity correction	η W	0.13
Calculated Power correction	W	10
Water Flow	m³/s	0.000193

Page 20 of 43 300-KLAB-23-040-19

Detailed result for 'EN14825:2022' Average Low (C) A 7 /W27		
Tested according to:	EN14511:2022 and	EN14825:2022
Climate zone:		Average
Temperature application:		Low
Condition name:		С
Condition temperature:	°C	7
Part load:	%	35%
Chosen Tbivalent	°C	-7
Tdesign	°C	-10
Pdesign	kW	6.80
Heating demand:	kW	2.35
CR:	-	0.7
Minimum flow reached:	-	No
Measurement type:		Steady State
Integrated circulation pump:		Yes
Included corrections (Final result)		
Heating capacity	kW	3.214
COP	-	6.786
Power consumption	kW	0.474
Measured		
Heating capacity	kW	3.222
COP	-	6.671
Power consumption	kW	0.483
During heating		
Air temperature dry bulb	°C	7.00
Air temperature wet bulb	°C	6.01
Inlet temperature	°C	23.23
Outlet temperature	°C	28.22
Outlet temperature (Time averaged)	°C	26.88
outlet temperature (Time averagea)	· ·	20.00
Circulation pump		
Measured: Static differential pressure, liquid pump	Pa	7725
Calculated Hydraulic power		1
Calculated global efficiency	ŋ	0.13
Calculated Capacity correction	w	8
Calculated Power correction	W	9
Water Flow	m³/s	0.000155

Page 21 of 43 300-KLAB-23-040-19

Detailed result for 'EN14825:2022' Average Low (D) A 12 /W24		
Tested according to:	EN14511:2022 and E	N14825:2022
Climate zone:		Average
Temperature application:		Low
Condition name:		D
Condition temperature:	°C	12
Part load:	%	15%
Chosen Tbivalent	°C	-7
Tdesign	°C	-10
Pdesign	kW	6.80
Heating demand:	kW	1.05
CR:	_	0.3
Minimum flow reached:	_	No
Measurement type:		Steady State
Integrated circulation pump:		Yes
Included corrections (Final result)		
Heating capacity	kW	3.760
COP	-	8.848
Power consumption	kW	0.425
·		
Measured		
Heating capacity	kW	3.766
COP	-	8.724
Power consumption	kW	0.432
·		
During heating		
Air temperature dry bulb	°C	12.00
Air temperature wet bulb	°C	10.92
Inlet temperature	°C	22.61
Outlet temperature	°C	27.47
Outlet temperature (Time averaged)	°C	23.96
	_	
Circulation pump		
Measured: Static differential pressure, liquid pump	Pa	4440
Calculated Hydraulic power	w	1
Calculated global efficiency	η	0.12
Calculated Capacity correction	w	6
Calculated Power correction	W	7
Water Flow	m³/s	0.000185

Page 22 of 43 300-KLAB-23-040-19

Detailed result for 'EN14825:2022' Average Low (E) A -10 /W35		
Tested according to:	EN14511:2022 and	EN14825:2022
Climate zone:		Average
Temperature application:		Low
Condition name:		Е
Condition temperature:	°C	-10
Part load:	%	100%
Chosen Tbivalent	°C	-7
Tdesign	°C	-10
Pdesign	kW	6.80
Heating demand:	kW	6.80
CR:	-	1.0
Minimum flow reached:	-	No
Measurement type:		Steady State
Integrated circulation pump:		Yes
Included corrections (Final result)		
Heating capacity	kW	5.392
СОР	-	2.684
Power consumption	kW	2.009
Measured		
Heating capacity	kW	5.404
COP	_	2.672
Power consumption	kW	2.023
· ·		
During heating		
Air temperature dry bulb	°C	-10.00
Air temperature wet bulb	°C	-11.02
Inlet temperature	°C	29.99
Outlet temperature	°C	34.96
Outlet temperature (Time averaged)	°C	34.96
Outlet temperature (Time averageu)	C	34.50
Circulation pump		
Measured: Static differential pressure, liquid pump	Pa	7052
Calculated Hydraulic power	w	2
Calculated global efficiency	η	0.14
Calculated Capacity correction	w	12
Calculated Power correction	W	14
Water Flow	m³/s	0.000261

Page 23 of 43 300-KLAB-23-040-19

Detailed SCOP part load test results - medium temperature application - average climate $\overline{}$ EN 14825

Detailed result for 'EN14825:2022' Average Medium (A and F	F) A -7 /W52	
Tested according to:	EN14511:2022 and	EN14825:2022
Climate zone:		Average
Temperature application:		Medium
Condition name:		A and F
Condition temperature:	°C	-7
Part load:	%	88%
Chosen Tbivalent	°C	-7
Tdesign	°C	-10
Pdesign	kW	5.70
Heating demand:	kW	5.04
CR:	-	1.0
Minimum flow reached:	-	No
Measurement type:		Steady State
Integrated circulation pump:		Yes
Included corrections (Final result)		
Heating capacity	kW	5.180
СОР	-	2.130
Power consumption	kW	2.433
Measured		
Heating capacity	kW	5.188
СОР	-	2.125
Power consumption	kW	2.441
During heating		
Air temperature dry bulb	°C	-6.98
Air temperature wet bulb	°C	-8.01
Inlet temperature	°C	44.00
Outlet temperature	°C	52.01
Outlet temperature (Time averaged)	°C	52.01
,	_	
Circulation pump		
Measured: Static differential pressure, liquid pump	Pa	7038
Calculated Hydraulic power	W	1
Calculated global efficiency	η	0.13
Calculated Capacity correction	w	8
Calculated Power correction	W	9
Water Flow	m³/s	0.000156

Page 24 of 43 300-KLAB-23-040-19

Detailed result for 'EN14825:2022' Average Medium (B) A 2 /W4	2	
Tested according to:	EN14511:2022 and	EN14825:2022
Climate zone:		Average
Temperature application:		Medium
Condition name:		В
Condition temperature:	°C	2
Part load:	%	54%
Chosen Tbivalent	°C	-7
Tdesign	°C	-10
Pdesign	kW	5.70
Heating demand:	kW	3.07
CR:	-	1.0
Minimum flow reached:	-	No
Measurement type:		Steady State
Integrated circulation pump:		Yes
Included corrections (Final result)		
Heating capacity	kW	3.134
сор	-	3.578
Power consumption	kW	0.876
Measured		
Heating capacity	kW	3.138
COP	-	3.564
Power consumption	kW	0.880
During heating		
Air temperature dry bulb	°C	2.10
Air temperature wet bulb	°C	1.01
Inlet temperature	°C	35.01
Outlet temperature	°C	41.85
Outlet temperature (Time averaged)	°C	41.85
outer temperature (Time averagea)		12.00
Circulation pump		
Measured: Static differential pressure, liquid pump	Pa	4813
Calculated Hydraulic power	W	1
Calculated global efficiency	η	0.12
Calculated Capacity correction	w	4
Calculated Power correction	W	4
Water Flow	m³/s	0.000110

Page 25 of 43 300-KLAB-23-040-19

Detailed result for 'EN14825:2022' Average Medium (C) A 7 /W	/36	
Tested according to:	EN14511:2022 and	EN14825:2022
Climate zone:		Average
Temperature application:		Medium
Condition name:		С
Condition temperature:	°C	7
Part load:	%	35%
Chosen Tbivalent	°C	-7
Tdesign	°C	-10
Pdesign	kW	5.70
Heating demand:	kW	1.97
CR:	-	0.7
Minimum flow reached:	-	Yes
Measurement type:		Steady State
Integrated circulation pump:		Yes
Included corrections (Final result)		
Heating capacity	kW	2.938
СОР	-	4.741
Power consumption	kW	0.620
Measured		
Heating capacity	kW	2.945
COP	_	4.695
Power consumption	kW	0.627
During heating		
Air temperature dry bulb	°C	7.00
Air temperature wet bulb	°C	6.00
Inlet temperature	°C	31.81
Outlet temperature	°C	38.11
Outlet temperature (Time averaged)	°C	36.04
outlet temperature (Time averaged)	C	30.04
Circulation pump		
Measured: Static differential pressure, liquid pump	Pa	8300
Calculated Hydraulic power	w	1
Calculated plobal efficiency	η	0.12
Calculated Capacity correction	W	7
Calculated Power correction	W	8

Page 26 of 43 300-KLAB-23-040-19

Detailed result for 'EN14825:2022' Average Medium (D) A 12 /W	30	
Tested according to:	EN14511:2022 and	EN14825:2022
Climate zone:		Average
Temperature application:		Medium
Condition name:		D
Condition temperature:	°C	12
Part load:	%	15%
Chosen Tbivalent	°C	-7
Tdesign	°C	-10
Pdesign	kW	5.70
Heating demand:	kW	0.88
CR:	-	0.2
Minimum flow reached:	-	Yes
Measurement type:		Steady State
Integrated circulation pump:		Yes
Included corrections (Final result)		
Heating capacity	kW	3.589
СОР	-	6.391
Power consumption	kW	0.562
Measured		
Heating capacity	kW	3.593
COP	-	6.343
Power consumption	kW	0.566
During heating		
Air temperature dry bulb	°C	12.00
Air temperature wet bulb	°C	10.90
Inlet temperature	°C	28.11
Outlet temperature	°C	35.79
Outlet temperature (Time averaged)	°C	29.98
Circulation pump		
Measured: Static differential pressure, liquid pump	Pa	5273
Calculated Hydraulic power	w	1
Calculated global efficiency	η	0.12
Calculated Capacity correction	w	4
Calculated Power correction	W	5
Water Flow	m³/s	0.000112

Page 27 of 43 300-KLAB-23-040-19

Detailed result for 'EN14825:2022' Average Medium (E)	A -10 /W55
Tested according to:	EN14511:2022 and EN14825:2022
Climate zone:	Average
Temperature application:	Medium
Condition name:	E
Condition temperature:	°C -10
Part load:	% 100%
Chosen Tbivalent	°C -7
Tdesign	°C -10
Pdesign	kW 5.70
Heating demand:	kW 5.70
CR:	- 1.0
Minimum flow reached:	- No
Measurement type:	Steady State
Integrated circulation pump:	Yes
Included corrections (Final result)	
Heating capacity	kW 4.491
COP	- 1.829
Power consumption	kW 2.455
Measured	
Heating capacity	kW 4.496
COP	- 1.827
Power consumption	kW 2.461
rower consumption	2.401
During heating	
Air temperature dry bulb	°C -10.03
Air temperature wet bulb	°C -11.14
	°C 46.99
Inlet temperature	
Outlet temperature	°C 55.08
Outlet temperature (Time averaged)	°C 55.08
Circulation pump	
Measured: Static differential pressure, liquid pump	Pa 5299
Calculated Hydraulic power	W 1
Calculated global efficiency	η 0.12
Calculated Capacity correction Calculated Power correction	W 5
	.
Water Flow	m³/s 0.000135

Page 28 of 43 300-KLAB-23-040-19

Detailed SCOP part load test results - low temperature application - warmer climate - EN 14825

Detailed result for 'EN14825:2022' Warmer Low (B) A 2 /W35		
Tested according to:	EN14511:2022 and	EN14825:2022
Climate zone:		Warmer
Temperature application:		Low
Condition name:		В
Condition temperature:	°C	2
Part load:	%	100%
Chosen Tbivalent	°C	7
Tdesign	°C	2
Pdesign	kW	6.10
Heating demand:	kW	6.10
CR:	-	1.0
Minimum flow reached:	-	No
Measurement type:		Transient
Integrated circulation pump:		Yes
Included corrections (Final result)		
Heating capacity	kW	5.895
СОР	-	3.817
Power consumption	kW	1.544
Measured		
Heating capacity	kW	5.906
COP	-	3.794
Power consumption	kW	1.556
·		
During heating		
Air temperature dry bulb	°C	2.12
Air temperature wet bulb	°C	0.97
Inlet temperature	°C	30.05
Outlet temperature	°C	35.21
Outlet temperature (Time averaged)	°C	35.21
outer temperature (Time are agea)		
Circulation pump		
Measured: Static differential pressure, liquid pump	Pa	5353
Calculated Hydraulic power		2
Calculated global efficiency	η	0.13
Calculated Capacity correction	w	10
Calculated Power correction	W	12
Water Flow	m³/s	0.000295

Page 29 of 43 300-KLAB-23-040-19

Detailed result for 'EN14825:2022' Warmer Low (C) A 7 /W31		
Tested according to:	EN14511:2022 and	EN14825:2022
Climate zone:		Warmer
Temperature application:		Low
Condition name:		С
Condition temperature:	°C	7
Part load:	%	64%
Chosen Tbivalent	°C	7
Tdesign	°C	2
Pdesign	kW	6.10
Heating demand:	kW	3.92
CR:	-	1.0
Minimum flow reached:	-	No
Measurement type:		Steady State
Integrated circulation pump:		Yes
Included corrections (Final result)		
Heating capacity	kW	3.994
COP	-	6.027
Power consumption	kW	0.663
Measured		
Heating capacity	kW	3.997
СОР	-	5.998
Power consumption	kW	0.666
During heating		
Air temperature dry bulb	°C	7.00
Air temperature wet bulb	°C	6.00
Inlet temperature	°C	26.01
Outlet temperature	°C	31.07
Outlet temperature (Time averaged)	°C	31.07
Circulation pump		
Measured: Static differential pressure, liquid pump	Pa	2369
Calculated Hydraulic power	w	0
Calculated global efficiency	η	0.12
Calculated Capacity correction	w	3
Calculated Power correction	W	4
Water Flow	m³/s	0.000190

Page 30 of 43 300-KLAB-23-040-19

Detailed SCOP part load test results - low temperature application - colder climate $\overline{}$ EN 14825

Detailed result for 'EN14825:2022' Colder Low (A) A -7 /W30		
Tested according to:	EN14511:2022 and	EN14825:2022
Climate zone:		Colder
Temperature application:		Low
Condition name:		Α
Condition temperature:	°C	-7
Part load:	%	61%
Chosen Tbivalent	°C	-15
Tdesign	°C	-22
Pdesign	kW	5.60
Heating demand:	kW	3.39
CR:	-	1.0
Minimum flow reached:	-	No
Measurement type:		Steady State
Integrated circulation pump:		Yes
Included corrections (Final result)		
Heating capacity	kW	3.392
сор	-	3.736
Power consumption	kW	0.908
Measured		
Heating capacity	kW	3.400
сор	-	3.708
Power consumption	kW	0.917
During heating		
Air temperature dry bulb	°C	-6.98
Air temperature wet bulb	°C	-8.00
Inlet temperature	°C	25.00
Outlet temperature	°C	29.92
Outlet temperature (Time averaged)	°C	29.92
Circulation pump		
Measured: Static differential pressure, liquid pump	Pa	6897
Calculated Hydraulic power	W	1
Calculated global efficiency	η	0.13
Calculated Capacity correction	W	8
Calculated Power correction	W	9
Water Flow	m³/s	0.000166

Page 31 of 43 300-KLAB-23-040-19

Detailed result for 'EN14825:2022' Colder Low (F and C	G) A -15 /W32
Tested according to:	EN14511:2022 and EN14825:2022
Climate zone:	Colder
Temperature application:	Low
Condition name:	F and G
Condition temperature:	°C -15
Part load:	% 82%
Chosen Tbivalent	°C -15
Tdesign	°C -22
Pdesign	kW 5.60
Heating demand:	kW 4.57
CR:	- 1.0
Minimum flow reached:	- No
Measurement type:	Steady State
Integrated circulation pump:	Yes Yes
Included corrections (Final result)	
Heating capacity	kW 4.526
COP	- 2.365
Power consumption	kW 1.913
Measured	
Heating capacity	kW 4.536
COP	- 2.356
Power consumption	kW 1.925
During heating	
Air temperature dry bulb	°C -15.01
Air temperature wet bulb	°C -15.07
Inlet temperature	°C 26.99
Outlet temperature	°C 31.89
Outlet temperature (Time averaged)	°C 31.89
Circulation pump	
Measured: Static differential pressure, liquid pump	Pa 6897
Calculated Hydraulic power	w [*] 2
Calculated global efficiency	η 0.13
Calculated Capacity correction	W 10
Calculated Power correction	W 12
Water Flow	m³/s 0.000222

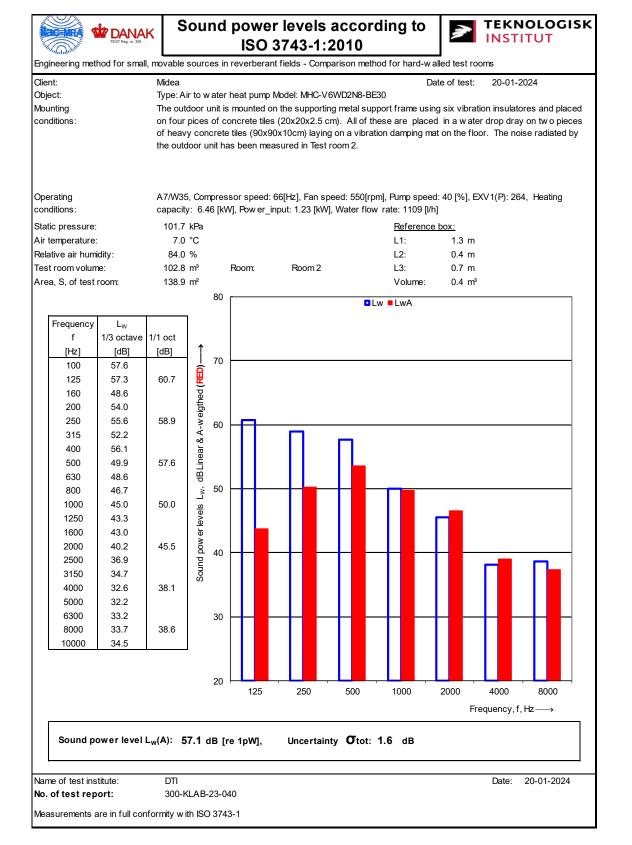
Page 32 of 43 300-KLAB-23-040-19

Detailed COP test results - low temperature - EN 14511

Detailed result for 'EN14511:2022' A7/W35		
Tested according to:	EN14511:2	022
Minimum flow reached:		No
Measurement type:	Steady St	ate
Integrated circulation pump:	<u> </u>	Yes
Included corrections (Final result)		
Heating capacity	kW 6.4	162
COP	- 4.9	996
Power consumption	kW 1.2	294
Measured		
Heating capacity	kW 6.4	471
COP	- 4.9	961
Power consumption	kW 1.3	304
During heating		
Air temperature dry bulb	°C 6	.99
Air temperature wet bulb	°C 6	.00
Inlet temperature	°C 30	.04
Outlet temperature	°C 35	.09
Circulation pump		
Measured: Static differential pressure, liquid pump	Pa 4	628
Calculated Hydraulic power	w	1
Calculated global efficiency	η 0	0.13
Calculated Capacity correction	w	10
Calculated Power correction	W	11
Water Flow	m³/s 0.0003	308

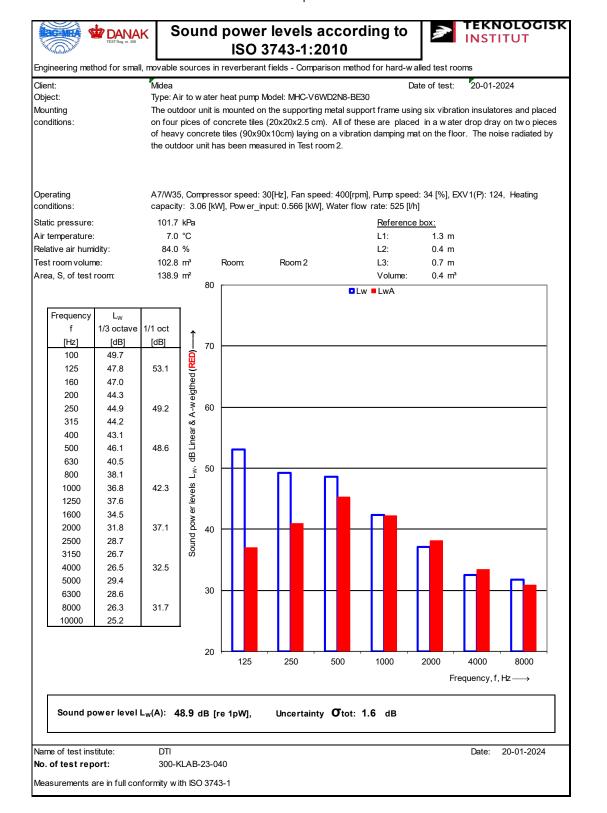
Page 33 of 43 300-KLAB-23-040-19

Detailed COP test results - medium temperature - EN 14511


Detailed result for 'EN14511:2018' A7/W55		
Tested according to:	E	N14511:2018
Minimum flow reached:		No
Measurement type:		Steady State
Integrated circulation pump:		Yes
Included corrections (Final result)		
Heating capacity	kW	6.127
СОР	-	2.979
Power consumption	kW	2.057
Measured		
Heating capacity	kW	6.133
COP	-	2.972
Power consumption	kW	2.063
During heating		
Air temperature dry bulb	°C	7.00
Air temperature wet bulb	°C	6.00
Inlet temperature	°C	47.00
Outlet temperature	°C	54.99
Circulation pump		
Measured: Static differential pressure, liquid pump	Pa	4303
Calculated Hydraulic power	W	1
Calculated global efficiency	η	0.12
Calculated Capacity correction	W	6
Calculated Power correction	W	7
Water Flow	m³/s	0.000186

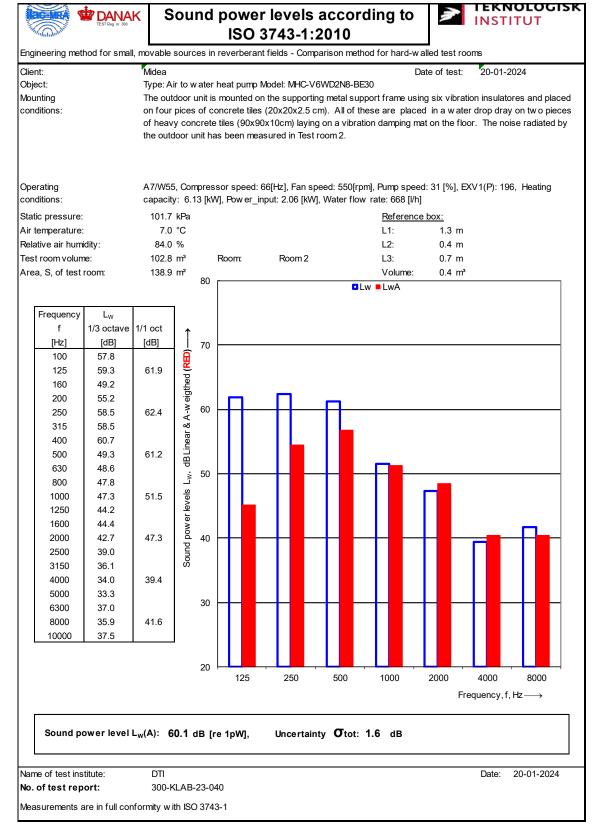
Page 34 of 43 300-KLAB-23-040-19

Detailed test results of sound power measurement - Test N#1



Page 35 of 43 300-KLAB-23-040-19

Detailed test results of sound power measurement - Test N#2



Page 36 of 43 300-KLAB-23-040-19

Detailed test results of sound power measurement - Test N#3

Page 37 of 43 300-KLAB-23-040-19

Detailed test results of sound power measurement - Test N# 4

Sound power levels according to ISO 3743-1:2010

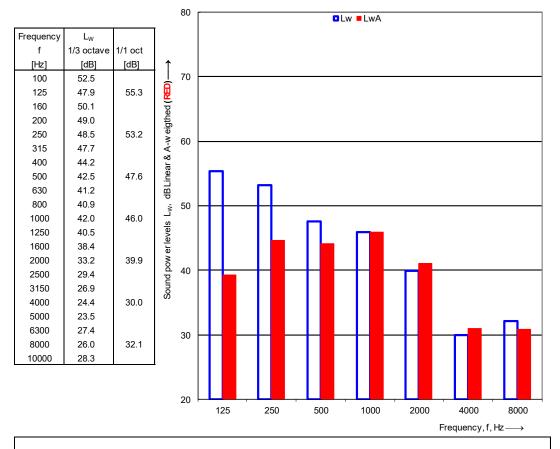
TEKNOLOGISK INSTITUT

Engineering method for small, movable sources in reverberant fields - Comparison method for hard-walled test rooms

Client: Midea Date of test: 20-01-2024

Object: Type: Air to w ater heat pump Model: MHC-V6WD2N8-BE30

Mounting The outdoor unit is mounted on the supporting metal support frame using six vibration insulatores and placed conditions: on four pices of concrete tiles (20x20x2.5 cm). All of these are placed in a water drop dray on two pieces


of heavy concrete tiles (90x90x10cm) laying on a vibration damping mat on the floor. The noise radiated by

the outdoor unit has been measured in Test room 2.

Operating A7/W55, Compressor speed: 38[Hz], Fan speed: 400[rpm], Pump speed: 31 [%], EXV1(P): 114, Heating

conditions: capacity: 3.19 [kW], Pow er_input: 1.14 [kW], Water flow rate: 405 [l/h]

101.7 kPa Static pressure: Reference box: Air temperature: 7.0 °C L1: 1.3 m 84 0 % 12. 0.4 m Relative air humidity: 102.8 m³ L3: 0.7 m Test room volume: Room: Room 2 Area, S, of test room: 138.9 m² Volume: 0.4 m³

Sound power level L_W(A): 50.7 dB [re 1pW], Uncertainty **O**tot: 1.6 dB

Name of test institute: DTI Date: 20-01-2024

No. of test report: 300-KLAB-23-040

Measurements are in full conformity with ISO 3743-1

Page 38 of 43 300-KLAB-23-040-19

Appendix 1

Unit specification

Type of unit: Mono air to water heat pump

Manufacturer: Midea

Size of the heat pump: $0.4 \times 0.7 \times 1.3 \text{m}$ (W x L x H)

Year of production: n/a.

Operating conditions and environment

The operating conditions of the unit under test fulfill the requirements for Class A.

The acoustic test chamber is a hard wall reverberant room (103 m³ and equipped with relevant sound diffusing reflector panels. The acoustical test chamber fulfils the requirements of ISO3743-1 accuracy grade 2 (engineering grade).

The measurements of the average sound pressure levels in 1/3 octave frequency bands are carried out using three microphones in the test chamber. During the measurements, the microphones are traversed up and down for one meter in the arc of a quarter circle.

The picture below shows the installation of the unit during test, position of microphones, sound diffusing reflector panels, and the reference sound source.

Page 39 of 43 300-KLAB-23-040-19

Measurement instruments

Id nr.	Manufacturer	Description	Calibration company
100864	GRAS	Gras 40AE_26CA, ½" free field microphone, Room 1	Norsonic A/S, Norway
100865	GRAS	Gras 40AE_26CA, ½" free field microphone, Room 1	Norsonic A/S, Norway
100866	GRAS	Gras 40AE_26CA, ½" free field microphone, Room 1	Norsonic A/S, Norway
100867*	GRAS	Gras 40AE_26CA, ½" free field microphone, Room 2	Norsonic A/S, Norway
100868*	GRAS	Gras 40AE_26CA, ½" free field microphone, Room 2	Norsonic A/S, Norway
100869*	GRAS	Gras 40AE_26CA, ½" free field microphone, Room 2	Norsonic A/S, Norway
100870	GRAS	Gras 40AE_26CA, 1/2" free field microphone, Roof monitor	Norsonic A/S, Norway
100873*	Br ů el & Kjær	Acoustical calibrator, Br ů el & Kjær 4231	Element Metech, Denmark
100859	Norsonic	Reference sound source, Norsonic Nor278 Room 1	RISE, Sweden
100872*	Norsonic	Reference sound source, Norsonic Nor278 Room 2	RISE, Sweden
100620*	Norsonic	Multi-channel measurement system Nor850	Norsonic A/S, Norway

^{*}Instruments are used for the actual measurements for the calculation of the test results.

The other instruments are used for control measurements. All microphones are equipped with windshields.

Page 40 of 43 300-KLAB-23-040-19

Test Procedure

The measurements of the emitted sound power level from the heat pump are carried out according to the following standard:

DS/EN 14511: 2022EN 12102-1: 2022ISO/EN 3743-1: 2010

The basic acoustic measurement standard DS/EN 3743-1 is a comparison method using a calibrated reference sound source. Two series of sound pressure measurements are made under exactly the same acoustic conditions, e.g., the same microphone positions, temperature and air humidity. The calibrated sound power levels are known for the reference sound source at each frequency band, and they are used in the estimation of the acoustical correction factor for the calculation of the sound power emitted from the unit under test. The background noise levels are measured and used for relevant corrections.

The final total A-weighted sound power level is based on measurements and calculations in 1/3-octave levels, which then are summed into 1/1-octave levels. The A-weighted total sound power level is determined for the measured frequency range from 100 Hz to 10 kHz.

The actual microphone positions and correction values are saved in data files linked to the complete project documentation according to the DANAK-accreditation.

The complete measurement system is documented and regularly calibrated according to DANAK.

The detailed description of the measurement method is given in Danish in the quality database system "QA Web" at Danish Technological Institute, which is accessible by DANAK.

Measurement uncertainty

The uncertainty of sound power level in decibel is determined in accordance with ISO 3743-1, equation 22 $\sigma_{tot} = \sqrt{\sigma_{RO}^2 + \sigma_{omc}^2}$ where:

- σ_{RO} is the standard deviation of the reproducibility of the method
- σ_{omc} is the standard deviation describing the uncertainty associated with the instability of the operating and mounting conditions for the particular noise source during test.

 σ_{RO} expresses the uncertainty in test results delivered by the different accredited test laboratories due to different instrumentation and implementation of measurement procedure as well different radiation characteristics of the noise source during test.

 σ_{omc} expresses the uncertainty associated with the instability of the operating and mounting conditions for the particular noise source during test. The mounting and installation conditions in two DTI acoustical test chambers are well defined in the test procedure. Possible instability of the operating conditions is monitored and assessed prior to each noise test.

Page 41 of 43 300-KLAB-23-040-19

The test uncertainty σ_{omc} is calculated according to ISO3743-1 Annex C formula C.1 and is typically below 0.5dB. However, the uncertainty is rounded up to the nearest 0.5dB increment in the report. As pr. Table C.1 (accuracy grade 2), the uncertainty σ_{RO} is set to 1.5.

The expanded uncertainty U is calculated according to ISO 3743-1 equation 23: $U = k \sigma_{tot}$ where k = 2 for 95% confidence.

EXAMPLE:
$$\sigma_{tot}$$
: $\sqrt{1.5^2 + 0.5^2} = 1.6 \, dB$ and $U(95\%) = 3.2 \, dB$

Note: The expanded uncertainty does not include the standard deviation of production which is used in ISO4871 for the purpose of making noise declaration for batches of machines.

Page 42 of 43 300-KLAB-23-040-19

Appendix 2

Authorization Letter

This declaration of conformity is issued under the sole responsibility of

Manufacturer's Name: GD Midea HEATING&VENTILATING Equipment Co.,Ltd. Manufacturer's Address: Midea Industrial City, Shunde, Foshan, Guangdong, P.R. China

We declare that the following Heat pump product we produced for <u>LENNOX</u> <u>Polska Sp. z o.o.</u> are identical to our following models

Master company(Midea) model	Lennox model
MHC-V4W/D2N8-B	LV-HPM04-I5T
MHC-V4W/D2N8-BE30	LV-HPM04EH30-I5T
MHC-V6W/D2N8-B	LV-HPM06-I5T
MHC-V6W/D2N8-BE30	LV-HPM06EH30-I5T
MHC-V8W/D2N8-B	LV-HPM08-I5T
MHC-V8W/D2N8-BE30	LV-HPM08EH30-I5T
MHC-V8W/D2N8-BER90	LV-HPM08EH90-I5T
MHC-V10W/D2N8-B	LV-HPM10-I5T
MHC-V10W/D2N8-BE30	LV-HPM10EH30-I5T
MHC-V10W/D2N8-BER90	LV-HPM10EH90-I5T
MHC-V12W/D2N8-B	LV-HPM12-I5T
MHC-V12W/D2N8-BE30	LV-HPM12EH30-I5T
MHC-V12W/D2N8-BER90	LV-HPM12EH90-I5T
MHC-V14W/D2N8-B	LV-HPM14-I5T
MHC-V14W/D2N8-BE30	LV-HPM14EH30-I5T
MHC-V14W/D2N8-BER90	LV-HPM14EH90-I5T
MHC-V16W/D2N8-B	LV-HPM16-I5T
MHC-V16W/D2N8-BE30	LV-HPM16EH30-I5T
MHC-V16W/D2N8-BER90	LV-HPM16EH90-I5T
MHC-V12W/D2RN8-B	LV-HPM12-I5M
MHC-V12W/D2RN8-BE30	LV-HPM12EH30-I5M
MHC-V12W/D2RN8-BER90	LV-HPM12EH90-I5M
MHC-V14W/D2RN8-B	LV-HPM14-I5M
MHC-V14W/D2RN8-BE30	LV-HPM14EH30-I5M
MHC-V14W/D2RN8-BER90	LV-HPM14EH90-I5M
MHC-V16W/D2RN8-B	LV-HPM16-I5M
MHC-V16W/D2RN8-BE30	LV-HPM16EH30-I5M
MHC-V16W/D2RN8-BER90	LV-HPM16EH90-I5M

Page 43 of 43 300-KLAB-23-040-19

Company name: LENNOX Polska Sp. z o.o.

Tradename /-mark: LENNOX

Address: Ul.Wybrzeze Gdynskie 6A 01-531 Warszawa, Poland

Note: This declaration becomes invalid if technical or operational modifications are introduced without the manufacturer's consent.

Production year: 2020~2023

Date: 20/03/2014

Authorization:

[w prawym górnym rogu każdej strony znajduje się logo Duńskiego Instytutu Technologicznego] [uwaga tłumacza: w dokumencie źródłowym na każdej ze stron widnieje zapis: Test Reg. nr. 300]

RAPORT Z BADAŃ

Nr raportu: 300-KLAB-23-040-19 Teknologiparken Kongsvang Allé 29 DK-8000 Aarhus C +45 72 20 20 00 Info@teknologisk.dk www.teknologisk.dk

Strona 1 z 43 Init: KAMA/RTHI Nr pliku: 225959 Załaczniki: 2

Klient:

Firma:

GD MIDEA HEATING & VENTILATING EQUIPMENT CO., LTD.

Adres:

Penglai Industry Road, Beijiao

Miasto:

Shunde, Foshan, Guangdong, 528311, Chiny

Tel.:

+86 13902810522

Element:

Marka:

Midea

Rodzai:

Pompa ciepła typu powietrze-woda (monoblok)

Model:

MHC-V6W/D2N8-B

Nr seryjny:

341H09752012A250100012

Rok prod .:

Jednostka zewnętrzna: nie dotyczy

Daty:

Okres testowy: styczeń 2024 r

Nazwa

Marka:

handlowa:

Pompa ciepła typu powietrze-woda (monoblok) Rodzai:

Model:

LV-HPM06-I5T

Procedury

Zobacz cel (strona 2), aby zapoznać się z listą standardów.

Uwagi:

Urządzenie zostało dostarczone przez klienta. Ustawienia instalacyjne i testowe wykonano zgodnie z instrukcjami klienta. Pomiędzy poszczególnymi warunkami testowymi klient zmieniał różne parametry, takie jak prędkość sprężarki, zawór rozprężny, prędkość wentylatora, prędkość pompy, czas odszraniania i czas ogrzewania. Raport dla badanej jednostki nosi nazwę 300-KLAB-23-040, wydany 2024.03.21. Patrz również załącznik 2.

Warunki:

Test ten został przeprowadzony w ramach akredytacji zgodnie z wymogami międzynarodowymi (ISO/IEC 17025:2017) i zgodnie z Ogólnymi Warunkami Duńskiego Instytutu Technologicznego. Wyniki testu dotyczą wyłącznie badanego przedmiotu. Niniejszy raport z badań można cytować we fragmentach wyłącznie za pisemną zgodą Duńskiego Instytutu Technologicznego.

Klientowi nie wolno wspominać ani powoływać się na Duński Instytut Technologiczny lub pracowników Duńskiego Instytutu Technologicznego w celach reklamowych lub marketingowych, chyba że Duński Instytut Technologiczny udzielił w każdym przypadku swojej pisemnej zgody.

Oddział/Centrum: Duński Instytut Technologiczny

Energia i Klimat

Laboratorium Pomp Ciepła, Aarhus

Kamalathasan Arumugam

B.Sc. Engineer

Data: 2024.05.16

Recenzent:

Rasmus Thisgaard B.TecMan & MarEng

Pompy ciepła o identycznej konstrukcji

Według GD MIDEA HEATING & VENTILATION EQUIPMENT CO., LTD. Pompy ciepła wymienione w poniższej tabeli uważa się za identyczne z badaną jednostką. Mają identyczne:

- a. moc grzewcza
- b. cykl czynnika chłodniczego (w tym masa czynnika chłodniczego)
- c. źródło ciepła i czynnik pochłaniający
- d. główne elementy / zasada działania i strategia sterowania
- e. obudowa zewnętrzna

Marka	Model	
Midea	MHC-V6W/D2N8-B	
Midea	MHC-V6W/D2N8-BE30	
Midea	MHC-V6W/D2N8-BE30	
Midea	MHC-V6W/D2N8-BE60	
Midea	MHC-V6W/D2N8-BER90	
Midea	MHC-V6W/D2N8-B1	
Midea	MHC-V6W/D2N8-B1E30	
Midea	MHC-V6W/D2N8-B1E60	
Midea	MHC-V6W/D2N8-B1ER90	
Midea	MHC-V6W/D2N8-B2	
Midea	MHC-V6W/D2N8-B2E30	
Midea	MHC-V6W/D2N8-B2E60	
Midea	MHC-V6W/D2N8-B2ER90	

Cel

Celem niniejszego raportu jest udokumentowanie następujących kwestii:

Sezonowy współczynnik wydajności (SCOP) w zastosowaniach nisko- i średniotemperaturowych dla klimatu umiarkowanego zgodnie z EN 14825:2022.

W celu obliczenia SCOP przeprowadzono badania w warunkach częściowego obciążenia podanych w tabelach na stronach 5 i 6.

Test obciążenia częściowego SCOP w warunkach SCOPC i SCOPB&F w zastosowaniach niskotemperaturowych dla cieplejszego klimatu zgodnie z EN 14825:2022.

Warunki testu częściowego obciążenia SCOP SCOP_A i SCOP_{G&F} w zastosowaniach niskotemperaturowych w chłodniejszym klimacie zgodnie z EN 14825:2022.

Standardowe warunki znamionowe testu COP (tryb ogrzewania) w niskiej i średniej temperaturze zgodnie z EN 14511:2022.

Wymagania eksploatacyjne zgodnie z EN 14511-4:2022

- 4.2.1 Próby rozruchu i działania
- 4.5 Zamknięcie dopływu czynnika grzewczego
- 4.6 Całkowita awaria zasilania

Pomiary mocy akustycznej zgodnie z EN 12102-1:2022.

Spis treści:

Warunki badania	
Warunki badania SCOP dla niskiej temperatury – EN 14825	5
Warunki badania SCOP dla średniej temperatury - EN 14825	6
Warunki badania COP – niska temperatura – EN 14511	7
Warunki badania COP - średnia temperatura - EN 14511	7
Warunki badania wymagań eksploatacyjnych – EN 14511-4	7
Warunki badania odcięcia czynnika grzewczego – EN 14511-4	8
Warunki badania całkowitej awarii zasilania – EN 14511-4	8
Warunki badania pomiarów mocy akustycznej – EN 12102-1	8
Wyniki badań	9
Wyniki testu SCOP w niskiej temperaturze - średnia sezonu grzewczego	- EN 148259
Wyniki badań testu SCOP w średniej temperaturze - średnia sezonu grze	wczego – EN 14825 10
Wyniki badań dla cieplejszego klimatu i niskiej temperatury zgodnie z EN	14825 11
Wyniki badań dla chłodniejszego klimatu i niskiej temperatury zgodnie z	EN1482511
Wyniki badania COP – niska temperatura – EN 14511	11
Wyniki badania COP - średnia temperatura - EN 14511	
Wyniki badań pomiarów mocy akustycznej - EN 12102	12
Zdjęcia	13
SCOP - szczegółowe obliczenia	14
Szczegółowe obliczenia SCOP dla niskich temperatur i średnich warunków kli	imatycznych – EN 14825 14
Szczegółowe obliczenia SCOP średniej temperatury i średnich warunków klin	natycznych - EN 14825 16
Szczegółowe wyniki badań	18
Szczegółowe wyniki testów obciążenia częściowego SCOP – zastosowanie w niskich temperaturacy	ch – klimat umiarkowany – EN 14825 18
Szczegółowe wyniki testów obciążenia częściowego SCOP – zastosowanie klimat umiarkowany – EN 14825	w średniej temperaturze –23
Szczegółowe wyniki testu obciążenia częściowego SCOP – zastosowanie w niskich temperatura	ach – cieplejszy klimat – EN 14825 28
Szczegółowe wyniki testów obciążenia częściowego SCOP – zastosowanie w niskich temperaturac	ch – chłodniejszy klimat – EN 14825 , 30
Szczegółowe wyniki badań COP - niska temperatura - EN 14511	32
Szczegółowe wyniki badań COP - średnia temperatura - EN 14511	33
Szczegółowe wyniki badań pomiaru mocy akustycznej – Test nr1	
Szczegółowe wyniki badań pomiaru mocy akustycznej – Test nr2	35
Szczegółowe wyniki badań pomiaru mocy akustycznej – Test nr3	36
The state of the s	37
1. 4	38
Załącznik 2	42

Warunki badania

Warunki badania SCOP dla niskiej temperatury – EN 14825 Warunki obciążenia częściowego dla odniesienia SCOP i odniesienia SCOP przy obliczaniu jednostek powietrze-woda dla zastosowań niskotemperaturowych dla referencyjnego sezonu grzewczego; "A" = umiarkowany, "W" = ciepły i "C" = chłodny.

						ętrzny nik ciepła	Wewn	ętrzny wyr	niennik	ciepła
	Współczynnik obciążenia częściowego w %			Temp. termometru suchego (mokrego) °C		Stały wylot °C	Zmienne wyloty °C			
	Wzór	umiarkow	ciepły	chłodny	Powietrze zewn	Wywiew. powietrze	Wszystkie klimaty	umiarkow	cieply	chłodny
A	(-7 - 16) / (T _{designh} - 16)	88,46	n/d	60,53	-7(-8)	20(12)	a / 35	a /34	n/d	a / 30
В	(+2 - 16) / (T _{designh} - 16)	53,85	100,00	36,84	2(1)	20(12)	a /35	a /30	a / 35	a /27
С	(+7 - 16) / (T _{designh} - 16)	34,62	64,29	23,68	7(6)	20(12)	a /35	a /27	a / 31	a /25
D	(+12 - 16)/ (T _{designh} - 16)	15,38	28,57	10,53	12(11)	20(12)	a / 35	a /24	a / 26	a / 24
Е	(TOL° - 16) / (T _{designh} - 16)			TOL^e	20(12)	a /35	a / b	a/b	a / b	
F	(T _{biv} - 16) / (T _{designh} - 16)			T _{biv}	20(12)	a / 35	a / c	a/c	a/c	
G	(-15 - 16) / (T _{designh} -16)	n/d	n/d	81,58	-15	20(12)	a /35	n/d	n/d	a / 32

Dodatkowe informacje

Klimat	T _{designh} [°C]	Tbivalent [°C]	TOL [°C]	Temperatura wylotowa	Natężenie przepływu
Umiarkowany	-10	-7	-10	Zmienna	Zmienne
Ciepły	2	7	2	Zmienna	Zmienne
Chłodny	-22	-15	-22	Zmienna	Zmienne

Warunki badania SCOP dla średniej temperatury - EN 14825

Warunki obciążenia częściowego dla referencyjnego SCOP i referencyjnego SCOP przy obliczaniu jednostek powietrze-woda dla zastosowań średniotemperaturowych dla referencyjnego sezonu grzewczego;

 $_{"}A" = umiarkowany, _{"}W" = ciepły i _{"}C" = chłodny.$

						ętrzny iik ciepła	Wewnętrzny wymiennik ciepła			
	Współczynnik obciążenia częściowego w %			Temp. termometru suchego (mokrego) °C		Staly wylot °C	Stały wylot °C			
	Wzór	umiark.	ciepły	chłodny	Powietrze zewn	Wywiew. powietrze	Wszystkie klimaty	umiark.	ciepły	chłodny
A	(-7 - 16) / (T _{designh} - 16)	88,46	n/d	60,53	-7(-8)	20(12)	a /55	a /52	n/d	a / 44
В	(+2 - 16) / (T _{designh} - 16)	53,85	100	36,84	2(1)	20(12)	a /55	a / 42	a / 55	a / 37
С	(+7 - 16) / (T _{designh} -16)	34,62	64,29	23,68	7(6)	20(12)	a /55	a /36	a /46	a /32
D	(+12 - 16)/ (T _{designh} - 16)	15.38	28 57	10,53	12(11)	20(12)	a / 55	a / 30	a / 34	a / 28
Е	(TOL ^e - 16) / (T _{designh} - 16)			TOL^e	20(12)	a /55	a/b	a / b	a / b	
F	(T _{biv} - 16) / (T _{designh} - 16)			T _{biv}	20(12)	a / 55	a / c	a/c	a/c	
G	(-15 - 16) / (T _{designh} - 16)	n/d	n/d	81,58	-15	20(12)	a / 55	n/d	n/d	a /49

Dodatkowe informacie

Klimat	T _{designh} [°C]	T _{bivalent} [°C]	TOL [°C]	Temperatura wylotowa	Natężenie przepływu
Umiarkowa ny	-10	-7	-10	Zmienna	Zmienne

Warunki badania COP - niska temperatura - EN 14511

	Źródło ci	epla	Radiator		
Nr	Temperatura termometru suchego na wlocie (°C)	Temperatura termometru mokrego na wlocie (°C)	Temperatura na wlocie(°C)	Temperatura na wylocie(°C)	
1 ^S	7	6	30	35	

S: Standardowy warunek

Warunki testu COP - średnia temperatura - EN 14511

	Źródło c	iepla	Radiator		
Nr	Temperatura termometru suchego na wlocie (°C)	Temperatura termometru mokrego na wlocie (°C)	Temperatura na wlocie(°C)	Temperatura na wylocie (°C)	
1 ^S	7	6	47	55	

S: Standardowy warunek

Warunki badania wymagań eksploatacyjnych - EN 14511-4

	Źródło ciepła		Radiator	Natężenie przepływu	
Nr	Temperatura termometru suchego na wlocie (°C)	Temperatura termometru mokrego na wlocie (°C)	Temperatura na wlocie(°C)	wody w wymienniku ciepła jednostki wewnętrznej	Test
1	-25	-	14	415 L/h	Rozruch
2	-25	-	35	415 L/h	Praca

Warunki testowe odcięcia czynnika grzewczego - EN 14511-4

Źródło c	iepła	Rad		
Temperatura termometru suchego na wlocie (°C)	Temperatura termometru mokrego na wlocie (°C)	Temperatur a na wlocie (°C)	Temperatur a na wylocie (°C)	Wymiennik ciepła
7	6	47	55	Wewnętrzny
7	6	47	55	Zewnętrzny

Warunki badania całkowitej awarii zasilania – EN 14511-4

	Źródło ciepła		Radiator		
Nr	Temperatura termometru suchego na wlocie (°C)	Temperatura termometru mokrego na wlocie (°C)	Temperatura na wlocie(°C)	Temperatura na wylocie(°C)	
1	7	6	47	55	

Warunki badania pomiarów mocy akustycznej - EN 12102-1

Nr	Warunki badania		Ustawienie pompy ciepła					
	Zewnętrzny wymiennik ciepła (termometr suchy/termo metr mokry) (°C)	Wewnętrzny wymiennik ciepła (wlot/wylot) (°C)	Prędkość sprężarki (Hz)	Prędkość wentylatora na zewnątrz (obr./min)	Wydajność grzewcza (kW)	Wejście zasilania (kW)		
1 ^F	7/6	30/35	66	550	6.46	1.23		
2 ^p	7/6	30/35	30	400	3.06	0.57		
3 ^F	7/6	47/55	66	550	6.13	2.06		
4E	7/6	47/55	38	400	3019	1.14		

F) Pełne obciążenie, P) częściowe obciążenie, E) oznakowanie ErP

MHC-V6W/D2N8-B

Wyniki badań Wyniki badania SCOP w niskiej temperaturze - średnia sezonu grzewczego - EN 14825

Model (zewnętrzny)

Monoblokowa pompa	ciepła powietrze	-woda	N		
Niskotemperaturowa	oompa ciepła	07	T		
Wyposażona w dodatł Ogrzewacz wielofunko	cowy podgrzewa	enta	N		
Odwracalna	yjny z pompą ci	Сріц	Т		
ouniuouniu					
Znamionowa moc cieplna	1)	Prated		6.8 [kW]	
Sezonowa efektywność en		ηs		192.8 [%]	
ogrzewania pomieszczeń	ler gety ozna	SCOP		4.89 [-]	
3					
	Klimat	Tj=-15 °C	Pdh	- [kW]	
	umiarkowany -	Tj=-7 °C	Pdh	5.74 [kW	
Zmierzona wydajność	zastosowanie w	Ti=2 °C	Pdh	3.72 [kW	
grzewcza przy częściowym obciążeniu	niskich temperaturach	Tj=7 °C	Pdh	3.21 [kW	
przy temperaturze		Ti=12 °C	Pdh	3.76 [kW	
zewnętrznej Tj		Tj=temperatura biwalentna	Pdh	5.74 [kW	
		Tj = granica działania	5.39 [kW		
	Klimat	Tj=-15 °C	COPd	- [-	
	umiarkowany -	Tj=-7 °C	COPd	3.02 [-]	
Zmierzony współczynnik ydajności w temperaturze zewnętrznej Tj	zastosowanie w niskich temperaturach	Tj=2 °C	COPd	4.76 [-]	
		Tj=7 °C	COPd	6.79 [-]	
		Tj=12 °C	COPd	8.85 [-]	
		Tj=temperatura biwalentna	COPd	3.02 [-]	
		Tj = granica działania	COPd	2.68 [-]	
Temperatura biwalentna		Tbivalent		-7 [°C]	
Granica działania		TOL		-10 [°C]	
emperatury		WTOL	- [°C]		
Współczynnik degradacji		Cdh	0.95 [-]		
		I To the condensation	l D	0.015 [kW]	
2-b for many 11-to-th-a-b		Tryb wyłączony	Poff	0.015 [kW]	
obór mocy w trybach nnych niż tryb		Tryb wyłączenia termostatu	Рто		
ktywny		Tryb czuwania	PsB	0.015 [kW]	
		Model grzałki skrzyni korbowej	Рск	0.015 [kW]	
odatkowa grzałka ¹⁾		Znamionowa moc cieplna	Psup	1.41 [kW]	
ouatkowa grzaika		Rodzaj energii wejściowej		Elektryczn	
		Kantrala najamnaási		Zmienna	
		Kontrola pojemności Kontrola przepływu wody		Zmienna	
nne pozycje		Natężenie przepływu wody		•	
		Transport of the transport	OHE	2870 [k\Mh]	

znamionowa moc cieplna Prated jest równa obciążeniu projektowemu ogrzewania Pdesignh, a znamionowa moc cieplna ogrzewacza dodatkowego Psup jest równa dodatkowej wydajności grzewczej, sup(Tj).

Roczne zużycie energii QHE 2870
W przypadku ogrzewaczy pomieszczeń z pompą ciepła i wielofunkcyjnych ogrzewaczy z pompą ciepła

Do obliczenia SCOP wykorzystywana jest wartość PCK - PSB. Patrz strona 15

2870 [kWh]

Wyniki badań testu SCOP w średniej temperaturze - średnia sezonu grzewczego – EN 14825

Model (zewnętrzny)	MHC-V6W/D2N8-B
Monoblokowa pompa ciepła powietrze-woda	T
Niskotemperaturowa pompa ciepła	N
Wyposażona w dodatkowy podgrzewacz	T
Ogrzewacz wielofunkcyjny z pompą ciepła	N
Odwracalna	T

)	Prated		5.7 [kW]
	ne		140.4 [%]
ergetyczna	SCOP		3.58 [-]
Klimat	Tj=-15 °C	Pdh	- [kW]
umiarkowany -	Tj=-7 °C	Pdh	5.18 [kW]
	Tj=2 °C	Pdh	3.13 [kW]
	Tj=7 °C	Pdh	2.94 [kW]
temperaturach	Tj=12 °C	Pdh	3.59 [kW]
		Pdh	5.18 [kW]
	Tj = granica działania	Pdh	4.49 [kW]
Klimat	Tj=-15 °C		- [-]
zastosowanie w	Tj=-7 °C	COPd	2.13 [-]
	Tj=2 °C	COPd	3.58 [-]
	Tj=7 °C	COPd	4.74 [-]
	Tj=12 °C	COPd	6.39 [-]
	Tj=temperatura biwalentna	COPd	2.13 [-]
	Tj = granica działania	COPd	1.83 [-]
	Thivalent		-7 [°C]
	1 N/ - 1		-10 [°C]
			-[°C]
		0.95 [-]	
	Cdh		0.95 [-]
	Tryb wyłaczony	Poff	0.015 [kW]
		Рто	0.020 [kW]
		PsB	0.015 [kW]
		Рск	0.015 [kW]
		Psup	1.21 [kW]
	Zilaili i i i i i i i i i i i i i i i i i		Elektryczna
			7.01.000
	Kontrola pojemności		Zmienna
			Zmienna
		10	3286 [kWh]
	zastosowanie w niskich temperaturach Klimat umiarkowany –	Rimat umiarkowany – zastosowanie w niskich temperaturach Klimat umiarkowany – zastosowanie w niskich temperaturach Klimat umiarkowany – zastosowanie w niskich temperaturach Klimat umiarkowany – zastosowanie w niskich temperaturach Tj=-15 °C Tj=-15 °C Tj=-15 °C Tj=-7 °C Tj=-7 °C Tj=-7 °C Tj=-7 °C Tj=-7 °C Tj=-12 °C Tj=-15 °C Tj15 °C T	Tight Tigh

W przypadku ogrzewaczy pomieszczeń z pompą ciepła i wielofunkcyjnych ogrzewaczy z pompą ciepła znamionowa moc cieplna Prated jest równa obciążeniu projektowemu ogrzewania Pdesignh, a znamionowa moc cieplna ogrzewacza dodatkowego Psup jest równa dodatkowej wydajności grzewczej, sup(Tj).

Do obliczenia SCOP wykorzystywana jest wartość PCK - PSB. Patrz strona 15

Wyniki badań dla cieplejszego klimatu i niskiej temperatury zgodnie z EN14825

Nr	Warunki badania	Wydajność grzewcza [kW]	СОР
1	В	5.895	3.817
2	Tbivalent C i F	3.994	6.027

Wyniki badań dla chłodniejszego klimatu i niskiej temperatury zgodnie z EN14825

Nr	Warunki badania	Wydajność grzewcza [kW]	СОР
1	А	3.392	3.736
2	Tbivalent F i G	4.526	2.365

Wyniki badania COP – niska temperatura – EN 14511

Nr	Warunki badania	Wydajność grzewcza [kW]	СОР
1	A7/W35	6.462	4.996

Wyniki badania COP - średnia temperatura - EN 14511

Nr	Warunki badania	Wydajność grzewcza [kW]	СОР
1	A7/W55	6.127	2.979

Wyniki badań pomiarów mocy akustycznej – EN 12102

Nr	Warunki badania	Poziom mocy akustycznej LW(A)[dB re 1pW]	Niepewność G tot [dB]
1 ^F	A7/W35	57.1	1.6
2 ^p	A7/W35	48.9	1.6
3F	A7/W55	60.1	1.6
4E	A7/55	50.7	1.6

F) Pełne obciążenie, P) częściowe obciążenie, E) oznakowanie ErP

Całkowity poziom mocy akustycznej ważony A jest wyznaczany dla mierzonego zakresu częstotliwości od 100 Hz do 10 kHz. Aby obliczyć niepewność, patrz załącznik 1.

Pomiary mocy akustycznej przeprowadza Kamalathasan Arumugam (KAMA), a recenzentem jest Patrick Glibert (PGL), Duński Instytut Technologiczny.

Zdjęcia

Tabliczka znamionowa (jednostka zewnętrzna)

C € E				
MONOBLOC	HEAT PU	MP		
MODEL	MHC-V6V	V/D2N8-B		
COOLING CAPACITY/EER @ A35W18	6.50kW /	4.80		
HEATING CAPACITY/COP @ A7W35	6.35kW/	4.95		
POWER SOURCE	220-240V	~ 50Hz		
RATED INPUT	2700W	TO SA		
RATED WATER PRESSURE	0.1-0.3MI	Pa		
NET WEIGHT	86kg			
REFRIGERANT	R32/1400g			
GWP	675			
EQUIVALENT CO2	0.95t			
EXCESSIVE OPERATING	HIGH	4.3MPa		
PRESSURE	LOW	2.6MPa		
MAXIMUM ALLOWABLE	PRESSURE	4.3MPa		
OUTDOOR RESISTANC	E CLASS	IP24		
Hermetically sealed a fluorinated greenhous	equipment se gases	contains		
a	idea			

Jednostka zewnętrzna

SCOP - szczegółowe obliczenia

Szczegółowe obliczenia SCOP dla niskich temperatur i średnich warunków klimatycznych - EN 14825

Obliczanie referencyjnego SCOP

$$SCOP = \frac{P_{designh} \times H_{he}}{\frac{P_{designh} \times H_{he}}{SCOP_{on}} + H_{TO} \times P_{TO} + H_{SB} \times P_{SB} + H_{CK} \times P_{CK} + H_{OFF} \times P_{OFF}}$$

Gdzie

P_{design} = Obciążenie grzewcze budynku w temperaturze projektowej, kW

H_{he} = Liczba równoważnych godzin ogrzewania, 2066 godz.

 H_{TO} , H_{SB} , H_{CK} , H_{OFF} = Liczba godzin, przez które przyjmuje się, że urządzenie pracuje w trybie wyłączenia termostatu, w trybie czuwania, w trybie grzałki karteru i w trybie wyłączenia, odpowiednio, h

PTO, PSB, PCK, POFF = Zużycie energii elektrycznej w trybie wyłączenia termostatu, trybie gotowości, trybie grzałki karteru i trybie wyłączenia, odpowiednio, kW

Dane dla SCOP

	zewnętrzna	Współc. obciążenia częściow.	Częściowe obciążenie	Deklarowana wydajność	Deklarow any COP	cdh	CR	COPbin
		IKW] [KW] [KW]	[kW]	[-]	[-]	[-]	[-]	
A	-7		6.02	5.74	3.02	0.99	1.00	
В	2	54	3.66	3.72	4.76	0.97	1.00	4.76
C	7	35	2.35	3.21	6.79	0.96	0.73	6.68
D	12				8.85	0.95	0.28	7.90
E	-10				2.68	0.99	1.00	2.68
F - BIV	-7	88			3.02	0.99	1.00	3.02

Zużycie energii w przypadku wyłączenia termostatu, czuwania, trybu wyłączenia i trybu grzałki karteru

	Godziny [h]	Wejście zasilania [kW]	Stosowane do obliczeń SCOP (kW]	Zużycie energii (kWh]
	Godziny [11]	0.0149	0.0149	0
Tryb wyłączony	0	0.0143		
Termostat wyłączony	178	0.0197	0.0197	3.5066
Tryb gotowości	0	0.0149	0.0149	0
Podgrzewacz karteru	178	0.0149	0	0

Strona 15 z 43 300-KLAB-23-040-19

	Przedział	Temperatura zewnętrzna	Godziny [h]	Obciążenie cieplne	Obciążenie cieplne Cieplne przez pompę cieplne przez pompę	Elektryczna grzałka rezerwowa	roczny pobór energii CO przez grzałkę rezerwowa [-]	COPbin [-]	Roc Zap bov na cie	czne ootrze vanie pło	> =	moc grzewcz a netto [kWh]	Roczny pobór mocy netto
,		5.1		[kw]	nobia five	[KW]	LKWI		_	KWhi	KWN		[kwn]
ш	21	1 -10		6.80	5.39	1.41	1.41		7.68	9.80	3.42	-1	
	22			6.54					2.80	163.46	75.03	137.69	
	2	9-	23	6.28	5.62	0.65	15.03		2.91	144.37	59.54	129.34	44.51
A/F - BIV	24	77	77	6.02	5.74	00.00	00.00		3.02	144.37	47.85	144.37	47.85
	2	9-	27	5.75	5.51	00.0	00.00		3.21	155.35	48.39	155.35	48.39
	2	9-				00.00			3.40	373.48	109.73	373.48	109.73
	2	7	91		5.05				3.60	476.00	132.33	476.00	132.33
	2	-3	88						3.79	442.26	116.68		116.68
	2	29 -2	-		4.58	00.00			3.98	776.77	194.99	776.77	194.99
	9				4.35	0.00		0	4.18	769.18	184.15		184.15
	3	31	240			00.0		0	4.37	1004.31	229.80	1004.31	229.80
	3	32	280	3.92		00.0	00.00	0	4.56	1098.46	240.70	1098.46	240.70
B	3	33 2		3.66	3.66	00.00	00.00		4.76	1171.69	246.31	1171.69	246.31
	8	34		3.40	3.40	00.00	00.0	0	5.14	1213.80	236.03		236.03
	es .	35 4		3.14	3.14	00.00	00.00	0	5.53	1117.29	202.12	_	
	8	36 5	303	3 2.88	2.88	00.00	00.00	0	5.91	871.71	147.41	871.71	147.41
	6	37 6	330	2.62	2.62	0.00	00.00	0	6.30	863.08	137.02	863.08	137.02
ပ	e	38 7	326	5 2.35	2.35	00.00	00:0	o	89.9	767.35	114.80	767.35	114.80
	8	39 8	348	8 2.09	2.09	00.00	00.0	0	6.93	728.12	105.11	728.12	105.1
	4	40	335	5 1.83	1.83	3 0.00	00.00	0	7.17	613.31	85.54	613.31	85.54
	4	10 10	315	1.57	1.57	00.0	00.0	0	7.41	494.31	89.99	494.31	89.99
	4	42 11	215	1,31	1.31	0.00	00.00	0	99.7	281.15	36.73	281.15	36.73
۵	4	43 12	169	1.05	1.05	00.00	00.00	0	7.90	176.80	22.38	176.80	22.38
	4	44 13	151				00.0	0	8.14	118.48	14.55	118.48	1
	4	45 14	105	5 0.52	2 0.52	0.00	0.00	0	8.38	54.92	6.55	54.92	6.55
	7	46 15		74 0.26	3 0.26	00.00	0.00	0	8.63	19.35	2.24	19.35	2.24
							Razem	_ E	-	14046.18	2866.09	2866.09 14003.97	2823.88
							SCOPon	uc	T		4.90	4.90SCOPnet	4.96

(0)

Szczegółowe obliczenia SCOP średniej temperatury i średnich warunków klimatycznych - EN 14825

Obliczanie referencyjnego SCOP

$$SCOP = \frac{P_{designh} \times H_{he}}{\frac{P_{designh} \times H_{he}}{SCOP_{on}} + H_{TO} \times P_{TO} + H_{SB} \times P_{SB} + H_{CK} \times P_{CK} + H_{OFF} \times P_{OFF}}$$

Gdzie

P_{design} = Obciążenie grzewcze budynku w temperaturze projektowej, kW

H_{he} = Liczba równoważnych godzin ogrzewania, 2066 godz.

Hто, Hsв, Hcк, Hoff = Liczba godzin, przez które przyjmuje się, że urządzenie pracuje w trybie wyłączenia termostatu, w trybie czuwania, w trybie grzałki karteru i w trybie wyłączenia, odpowiednio, h P_{TO}, P_{SB}, P_{CK}, P_{OFF} = Zużycie energii elektrycznej w trybie wyłączenia termostatu, trybie gotowości, trybie grzałki karteru i trybie wyłączenia, odpowiednio, kW

Dane dla SCOP

	Temperatura zewnętrzna [°C]	Współc. obciążenia częściow.	Częściowe obciążenie	Deklarowana wydajność	Deklarow any COP	cdh	CR	COPbin
		[kW]	[kW]	[kW]	[-]	[-]	[-]	[-]
Α	-7	88	5.04	5.18	2.13	0.99	1.00	2.13
В	2	54	3.07	3.13	3.58	0.98	1.00	3.58
С	7	35	1.97	2.94	4.74	0.97	0.67	4.67
D	12	15	0.88	3.59	6.39	0.96	0.24	5.77
E	-10	100	5.70	4.49	1.83	0.99	1.00	1.83
F-BIV	-7		5.04	5.18	2.13	0.99	1.00	2.13

Zużycie energii w przypadku wyłączenia termostatu, czuwania, trybu wyłączenia i trybu grzałki karteru

	Godziny [h]	Wejście zasilania [kW]	Stosowane do obliczeń SCOP (kW]	Zużycie energii (kWh]
Tryb wyłączony	0	0.0149	0.0149	0
Termostat wyłączony	178	0.0197	0.0197	3.5066
Tryb gotowości	0	0.0149	0.0149	0
Podgrzewacz karteru	178	0.0149	0	0

Strona 17 z 42 300-KLAB-23-040-17 wer.2

1pe Fezerwowa 1.21 1.22 1.22 1.23	Obciążenie cieplne Elektryczna grzałka	Roczny zna pobór energii przez	COPbin	Roczne zapotrze bowanie	Roczny pobór energii	Roczna moc grzewcz a netto	Roczny pobór mocy netto
21 -10 1 5.70 4.49 22 -9 25 5.48 4.67 23 -8 23 5.26 4.86 24 -7 24 5.04 5.04 26 -6 68 4.60 4.82 26 -6 68 4.60 4.82 27 -4 91 4.38 4.38 28 -2 165 3.95 3.95 30 -2 165 3.95 3.95 31 0 240 3.51 3.73 32 1 280 3.51 3.51 32 1 280 3.51 3.51 34 3 35 2.63 2.63 35 4 356 2.63 2.63 36 5 303 2.41 2.41 37 4 356 2.63 2.63 38 7 326	przez pompę Wj ciepła [kW]	wa grzałkę rezerwowa [kWh]	Ξ	na ciepło rkWhI		[kWh]	[kWh]
22 -9 25 5.48 4.67 23 -8 23 5.26 4.86 24 -7 24 5.04 5.04 25 -6 27 4.82 4.82 26 -6 6 8 4.60 4.60 27 -4 91 4.38 4.17 28 -3 89 4.17 4.17 29 -2 165 3.95 3.95 30 -1 173 3.73 3.73 31 0 240 3.51 3.51 32 1 280 3.29 3.29 34 3 3.51 3.51 3.51 34 3 3.57 2.85 2.63 35 4 3.56 2.63 2.63 36 5 303 2.41 2.71 37 4 1 1 40 9 3.36 <t< th=""><th>0 4.49</th><th>1.21 1.21</th><th>1.83</th><th></th><th></th><th>4.49</th><th>2.46</th></t<>	0 4.49	1.21 1.21	1.83			4.49	2.46
23 -8 23 5.26 4.86 24 -7 24 5.04 5.04 25 -6 27 4.82 4.82 26 -6 27 4.82 4.82 27 -4 91 4.82 4.60 27 -4 91 4.38 4.17 28 -3 165 3.95 3.95 30 -1 173 3.73 3.73 31 0 240 3.51 3.51 32 1 280 3.29 3.29 32 1 280 3.51 3.07 32 2 320 3.07 3.07 34 3 357 2.85 2.85 35 5 303 2.19 2.19 36 5 303 2.14 2.1 37 1 32 1.53 1.53 40 9 335		0.81 20.15		3 137,02	80.72	116,87	60.57
24 -7 24 5.04 5.04 25 -6 27 4.82 4.82 26 -5 68 4.60 4.60 27 -4 91 4.82 4.60 28 -3 89 4.17 4.17 29 -2 165 3.95 3.95 30 -1 173 3.73 3.29 30 -1 173 3.73 3.29 31 0 240 3.51 3.29 32 3 2.20 3.29 3.29 32 3 3.29 3.29 3.29 34 3 3.56 2.63 2.63 35 4 3.56 2.63 2.63 36 5 3.03 2.19 2.19 40 9 3.35 1.57 1.57 41 10 3.15 1.10 1.10 42 11 1.21		0.40 9.27	2.03	3 121.02	64.33	111.75	
25 -6 27 4.82 4.82 26 -5 68 4.60 4.60 27 -4 91 4.50 4.60 28 -3 89 4.17 4.17 29 -2 165 3.95 3.95 30 -1 173 3.73 3.51 31 0 240 3.51 3.29 32 1 280 3.29 3.29 33 2 3.20 3.07 3.07 34 3 3.57 2.85 2.63 35 4 3.56 2.63 2.63 36 5 3.03 2.41 2.19 37 6 3.30 2.19 2.19 40 9 3.35 1.53 1.53 41 10 3.15 1.53 1.53 42 11 2.15 1.10 1.10 44 13 151 0.66 0.66 44 15 74 0.22 0.22		0.00 00.00	2.13	3 121.02	56.81	121.02	56.81
26 -5 68 4.60 4.60 27 -4 91 4.38 4.38 28 -3 89 4.17 4.17 29 -2 165 3.95 3.95 30 -1 173 3.73 3.73 31 0 240 3.51 3.73 32 1 280 3.51 3.73 32 3 2 3.29 3.29 33 2 3.20 3.29 3.29 34 3 3 2 3.07 35 4 3.56 2.63 2.85 36 5 303 2.41 2.41 37 6 330 2.19 2.19 40 9 335 1.57 1.57 41 10 315 1.53 1.53 44 11 215 1.10 1.10 44 13 151 0.66 0.66 44 13 151 0.06 0.66 44 14 105 0.044 0.44 45 14 105 0.044 0.022					56.84	130.22	56.84
27 4 91 4.38 4.38 28 -3 89 4.17 4.17 29 -2 165 3.95 3.95 30 -1 173 3.73 3.73 31 0 240 3.51 3.73 31 0 240 3.51 3.73 32 1 280 3.29 3.29 32 2 3.20 3.29 33 2 3.29 3.29 34 3 3.57 2.85 2.85 35 4 3.56 2.63 2.41 37 6 330 2.41 2.41 37 6 330 2.19 2.19 40 9 336 1.57 1.57 40 9 335 1.53 1.53 44 11 215 1.10 1.10 44 13 151 0.66 44 13 151 0.66 44 14 105 0.044 0.44 45 14 105 0.044 0.022 46 15 74 0.022 0.022		0.00 00.00			127.69	31 3.06	127.69
28 -3 89 4.17 4.17 29 -2 165 3.95 3.95 30 -1 173 3.73 3.73 31 0 240 3.51 3.73 32 1 280 3.29 3.29 32 2 320 3.07 3.29 33 2 320 3.07 3.07 34 3 357 2.85 2.85 35 4 356 2.63 2.63 36 5 303 2.41 2.41 37 6 330 2.19 2.19 40 9 336 1.57 1.75 40 9 335 1.53 1.53 41 10 315 1.53 1.53 42 11 215 1.10 1.10 44 13 151 0.66 45 14 105 0.44 0.44 46 15 74 0.22 0.22					152.72	399.00	
29 -2 165 3.95 3.95 30 -1 173 3.73 3.73 31 0 240 3.51 3.73 32 1 280 3.29 3.29 33 2 320 3.07 3.07 34 3 357 2.85 2.85 35 4 356 2.63 2.63 36 5 303 2.41 2.41 37 6 330 2.19 2.19 40 9 336 1.57 1.57 40 9 335 1.53 1.53 44 10 315 1.10 1.10 44 44 11 215 1.06 0.66 44 13 151 0.66 0.66 44 15 74 0.22 0.22		0.00 00.00	2.77	7 370.72	133.66	370.72	133.66
30 -1 173 3.73 3.73 3.73 3.73 3.73 3.73 3.73		0.00 00.0	2.93	3 651.12	221.89	651.12	221.89
31 0 240 3.51 3.51 32 1 280 3.29 3.29 33 2 320 3.07 3.07 34 3 357 2.85 2.85 35 4 356 2.63 2.63 36 5 303 2.41 2.41 37 6 330 2.19 2.19 38 7 326 1.97 1.97 40 9 335 1.53 1.53 41 10 315 1.32 1.53 42 11 215 1.10 1.10 44 13 151 0.66 0.66 45 14 105 0.44 0.22 46 15 74 0.22 0.22		0.00		0 644.76	208.30	644.76	208.30
32 1 280 3.29 3.29 33 2 320 3.07 3.07 34 3 357 2.85 2.85 35 4 356 2.63 2.85 36 5 303 2.41 2.41 37 6 303 2.19 2.19 38 7 326 1.97 1.97 40 9 335 1.53 1.53 41 10 315 1.32 1.10 42 11 215 1.10 0.88 44 13 151 0.66 0.66 45 14 105 0.44 0.22 46 15 74 0.22 0.22		0.00 00.0		841.85	25853	841.85	258.53
33 2 320 3.07 3.07 34 3 357 2.85 2.85 35 4 356 2.63 2.85 36 5 303 2.41 2.41 37 6 330 2.19 2.19 38 7 326 1.97 1.97 40 9 335 1.75 1.75 41 10 315 1.32 1.10 42 11 215 1.10 1.10 44 13 151 0.66 0.66 45 14 105 0.22 0.22 46 15 74 0.22 0.22		0.00 0.00		2 920.77	269.46		269.46
34 3 357 2.85 2.85 35 4 356 2.63 2.63 36 5 303 2.41 2.41 37 6 330 2.19 2.19 38 7 326 1.97 1.97 40 9 335 1.53 1.75 41 10 315 1.53 1.53 42 11 215 1.10 1.10 44 13 151 0.66 0.66 46 15 74 0.22 0.22 46 15 74 0.22 0.22		0.00 00.00	3.58	8 982.15	274.50	982.15	274.50
35 4 356 2.63 36 5 303 2.41 37 6 330 2.19 2.41 38 7 326 1.97 1.97 40 9 336 1.75 1.75 41 10 315 1.53 1.53 42 11 215 1.10 1.10 44 13 151 0.66 0.66 45 14 105 0.044 46 15 74 0.22 0.22		0.00 0.00	3.80			_	
36 5 303 2.41 2.41 37 6 330 2.19 2.19 38 7 326 1.97 1.97 40 9 335 1.75 1.75 41 10 315 1.32 1.32 42 11 215 1.10 1.10 43 12 169 0.88 0.88 44 13 151 0.66 0.66 45 14 105 0.44 46 15 74 0.22 0.22		0.00 0.00			233.31		233.31
37 6 330 2.19 2.19 38 7 326 1.97 1.97 40 9 348 1.75 1.75 41 10 315 1.53 1.53 42 11 215 1.10 1.10 43 12 169 0.88 0.88 45 14 105 0.044 46 15 74 0.22 0.22		0.00 00.00	4.23		17255	730.70	172.65
38 7 326 1.97 1.97 39 8 348 1.75 1.75 40 9 335 1.53 1.53 41 10 315 1.32 1.32 42 11 215 1.10 1.10 43 12 169 0.88 0.88 45 14 105 0.044 46 15 74 0.22 0.22		0.00 0.00	4.45	5 723.46	162.56	723.46	162.56
39 8 348 1.75 1.75 40 9 335 1.53 1.53 41 10 315 1.32 1.32 42 11 215 1.10 1.10 43 12 169 0.88 0.88 44 13 151 0.66 0.66 45 14 105 0.44 0.44 46 15 74 0.22 0.22	1	0.00 00.00	4,67	7 643,22	137,78	643,22	137,78
40 9 335 1.53 1.53 41 10 315 1.32 1.32 42 11 215 1.10 1.10 43 12 169 0.88 0.88 44 13 151 0.66 0.66 46 15 74 0.22 0.22 46 15 74 0.22 0.22	1		4.89				
41 10 315 1.32 1.32 42 11 215 1.10 1.10 43 12 169 0.88 0.88 44 13 151 0.66 0.66 45 14 105 0.44 0.44 46 15 74 0.22 0.22	-				100.66	514.10	100.66
42 11 215 1.10 1.10 43 12 169 0.88 0.88 44 13 151 0.66 0.66 45 14 105 0.44 0.44 46 15 74 0.22 0.22	_	0.00 00.00		3 414.35		414.35	77.79
43 12 169 0.88 0.88 44 13 151 0.66 0.66 45 14 105 0.44 0.44 46 15 74 0.22 0.22		0.00 00.00	5.55	5 235.67	42.49	235.67	42.49
13 151 0.66 0.66 14 105 0.44 0.44 15 74 0.22 0.22		0.00 00.00	5.77	7 148.20		148.20	25.70
14 105 0.44 0.44 15 74 0.22 0.22			5.98	8 99.31		99.31	1
15 74 0.22 0.22		0.00 00.00		0 46.04		46.04	7.42
		0.00	6.42	2 19.35		19.35	2.24
		Razem	_	11774.01		3281 51 11743 38	3250.88
		SCOPon	u			3.59SCOPnet	

DA (13/01)

Szczegółowe wyniki badań

- Szczegółowe wyniki testów SCOP przy częściowym obciążeniu – zastosowanie w niskich temperaturach – klimat umiarkowany – EN 14825

Szczegółowy wynik dla "EN14825:2022" Um	iarkowana ni	ska(A i F) A -7/W34
Testowane zgodnie z:	EI	N14511:2022 i EN14825:2022
Strefa klimatyczna:		Umiarkowana
Zastosowanie temperatury:		Niska
Nazwa warunku:		AiF
Temperatura warunków:	°C	-7
Częściowe obciążenie:	%	88%
Wybrany Tbivalent	°C	-7
Tdesign	°C	-10
Pdesign	kW	6.80
Zapotrzebowanie na ciepło:	kW	6.02
CR:		1.0
Osiągnięty minimalny przepływ:		Nie
Typ pomiaru:		Przejściowy
Zintegrowana pompa obiegowa:		Tak
Uwzględnione korekty (wynik końcowy)		
Wydajność grzewcza	kW	5.739
COP		3.017
Pobór energii	kW	1.902
Zmierzone		
Wydajność grzewcza	kW	5.746
COP		3.007
Pobór energii	kW	1.911
Podczas ogrzewania		
Termometr suchy w temperaturze powietrza	°C	-7.00
Termometr mokry w temperaturze powietrza	°C	-8.12
Temperatura na wlocie	°C	29.02
Temperatura na wylocie	°C	33.99
Temperatura na wylocie (uśredniona w czasie)	°C	33.99
Pompa obiegowa		
Zmierzone: Statyczna różnica ciśnień, pompa cieczy	Pa	3774
Obliczona moc hydrauliczna	W	1
Obliczona wydajność globalna	n	0.13
Obliczona korekta wydajności	W	8
Obliczona korekta mocy Przepływ wody	W m³/s	0.000295
Przeptyw wody	, / 0	N.D.S

Szczegółowy wynik dla "EN14825:2022" Umiarkov	FN14511:202	2 and EN14825:2022
Testowane zgodnie z: Strefa klimatyczna:	211110111202	Umiarkowana
Zastosowanie temperatury:		Niska
Nazwa warunku:		В
	°C	2
Temperatura warunków:	%	54%
Częściowe obciążenie:	°C	-7
Wybrany Tbivalent	°C	-10
Tdesign	kW	6.80
Pdesign	kW	3.66
Zapotrzebowanie na ciepło:	10,1	1.0
CR:		Nie
Osiągnięty minimalny przepływ:		Przejściow
Typ pomiaru: Zintegrowana pompa obiegowa:		Tak
zintegrowana pompa obiegowa.		
Uwzględnione korekty (wynik końcowy)	kW	3.716
Wydajność grzewcza	1537	4.757
COP	kW	0.781
Pobór energii	N.V.	0,701
Zmierzone	IAM	3.724
Wydajność grzewcza	kW	4.709
COP	IAM	0.791
Pobór energii	kW	0.791
Termometr suchy w temperaturze powietrza	°C	2.09
Termometr mokry w temperaturze powietrza	°C	0.95
Temperatura na wlocie	°C	25.00
Temperatura na wylocie	°C	29.86
Temperatura na wylocie (uśredniona w czasie)	°C	29.86
Pompa obiegowa		
Zmierzone: Statyczna różnica ciśnień, pompa cieczy	Pa	6441
Obliczona moc hydrauliczna	w	1
Obliczona wydajność globalna	n	0.13
Obliczona korekta wydajności	W	8 10
Obliczona korekta mocy	W	5 30000
Przepływ wody	m³/s	0.000193

Szczegółowy wynik dla "EN14825:2022" Umiarko	wana Niska (C) A 7 /V	V27
Testowane zgodnie z:	EN14511:20	22 and EN14825:2022 Umiarkowana
Strefa klimatyczna:		Niska
Zastosowanie temperatury:		Niska
Nazwa warunku:		
Temperatura warunków:	°C	7
Częściowe obciążenie:	%	35%
Wybrany Tbivalent	°C	-7
Tdesign	°C	-10
Pdesign	kW	6.80
Zapotrzebowanie na ciepło:	kW	2.35
CR:		0.7
Osiągnięty minimalny przepływ:		Nie
Typ pomiaru:		Stan stabilny
Zintegrowana pompa obiegowa:		Tak
Uwzglednione korekty (wynik końcowy)		
Wydajność grzewcza	kW	3.214
COP		6.786
Pobór energii	kW	0.474
Zmierzone		1944
Wydajność grzewcza	kW	3.222
COP		6.671
Pobór energii	kW	0.483
	25	7.00
Termometr suchy w temperaturze powietrza	°C	
Termometr mokry w temperaturze powietrza	°C	6.01
Temperatura na wlocie	°C	23.23
Temperatura na wylocie	°C	28.22
Temperatura na wylocie (uśredniona w czasie)	°C	26.88
Pompa obiegowa		- 62.6
Zmierzone: Statyczna różnica ciśnień, pompa cieczy	Pa	7725
Obliczona moc hydrauliczna	W	1 0.13
Obliczona wydajność globalna	n	0.13
Obliczona korekta wydajności	W W	9
Obliczona korekta mocy	.,	0.000155
Przepływ wody	m³/s	0.000133

Szczegółowy wynik dla "EN14825:2022" Umiarkov Testowane zgodnie z:	EN14511:20	22 and EN14825:2022
Strefa klimatyczna:		Umiarkowana
Zastosowanie temperatury:		Niska
Nazwa warunku:		[
Temperatura warunków:	°C	12
Częściowe obciążenie:	%	15%
Wybrany Tbivalent	°C	-7
프 II - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	°C	-10
Tdesign	kW	6.80
Pdesign Zapotrzebowanie na ciepło:	kW	1.05
CR:	7711	0.3
Osiągnięty minimalny przepływ:		Nie
Typ pomiaru:		Stan stabilny
Zintegrowana pompa obiegowa:		Tak
Uwzględnione korekty (wynik końcowy) Wydajność grzewcza	kW	3.760
COP		8.848
Pobór energii	kW	0.425
Zmierzone		
Wydajność grzewcza	kW	3.766
COP		8.724
Pobór energii	kW	0.432
Tames and such with the posture of powietre	°C	12.00
Termometr suchy w temperaturze powietrza	°C	10.92
Termometr mokry w temperaturze powietrza	°C	22.61
Temperatura na wlocie		27.47
Temperatura na wylocie	°C °C	23.96
Temperatura na wylocie (uśredniona w czasie)	5 C	23.90
Pompa obiegowa		
Zmierzone: Statyczna różnica ciśnień, pompa cieczy	Pa	4440
Obliczona moc hydrauliczna Obliczona wydajność globalna	w n	0.12
Obliczona korekta wydajności	w	6
Obliczona korekta mocy	W	7
Przepływ wody	m ³ /s	0.000185

Szczegółowy wynik dla "EN14825:2022" Umiarko	wana Niska (E) A -10	0 /W35
Testowane zgodnie z:	EN14511	1:2022 I EN14825:2022
Strefa klimatyczna:		Umiarkowana Niska
Zastosowanie temperatury:		E
Nazwa warunku:		
Temperatura warunków:	°C	-10
Częściowe obciążenie:	%	100%
Wybrany Tbivalent	°C	-7
Tdesign	°C	-10
Pdesign	kW	6.80
Zapotrzebowanie na ciepło:	kW	6.80
CR:		1.0
Osiągnięty minimalny przepływ:		Nie
Typ pomiaru:		Stan stabilny
Zintegrowana pompa obiegowa:		Tak
Uwzględnione korekty (wynik końcowy)	144	5.392
Wydajność grzewcza	kW	
COP	no.	2.684
Pobór energii	kW	2.009
Zmierzone	kW	5.404
Wydajność grzewcza	KVV	2.672
COP	kW	2.023
Pobór energii	KVV	2.023
Termometr suchy w temperaturze powietrza	°C	-10.00
Termometr mokry w temperaturze powietrza	°C	-11.02
Temperatura na wlocie	°C	29.99
Temperatura na wylocie	°C	34.96
Temperatura na wylocie (uśredniona w czasie)	°C	34.96
Pompa obiegowa		3.52
Zmierzone: Statyczna różnica ciśnień, pompa cieczy	Pa	7052
Obliczona moc hydrauliczna	W	0.14
Obliczona wydajność globalna	n,	0.14
Obliczona korekta wydajności	W W	14
Obliczona korekta mocy	m³/s	0.000261
Przepływ wody	m ² /S	0.000201

Szczegółowe wyniki testów SCOP przy częściowym obciążeniu – zastosowanie w średniej temperaturze – klimat umiarkowany – EN 14825

Szczegółowy wynik dla "EN14825:2022" Umiarko	wana średnia (A i F)	A -7 /W52
Testowane zgodnie z: Strefa klimatyczna: Zastosowanie temperatury:	EN1451	1:2022 i EN14825:2022 Umiarkowana średnia
Nazwa warunku:		AiF
Temperatura warunków:	°C	-7
Częściowe obciążenie:	%	88%
Wybrany Tbivalent	°C	-7
Tdesign	°C	-10
Pdesign	kW	5.70
Zapotrzebowanie na ciepło:	kW	5.04
CR:		1.0
Osiągnięty minimalny przepływ:		Nie
Typ pomiaru:		Stan stabilny
Zintegrowana pompa obiegowa:		Tak
Uwzględnione korekty (wynik końcowy) Wydajność grzewcza	kW	5.180
COP		2.130
Pobór energii	kW	2.433
Zmierzone Wydajność grzewcza	kW	5.188
COP		2.125
Pobór energii	kW	2.441
The state of the s	96	-6.98
Termometr suchy w temperaturze powietrza	°C	
Termometr mokry w temperaturze powietrza	°C	-8.01
Temperatura na wlocie	°C	44.00
Temperatura na wylocie Temperatura na wylocie (uśredniona w czasie)	°C	52.01 52.01
Pompa obiegowa		
Zmierzone: Statyczna różnica ciśnień, pompa cieczy	Pa	7038
Obliczona moc hydrauliczna	w	1
Obliczona wydajność globalna	η	0.13
Obliczona korekta wydajności	W	8
Obliczona korekta mocy	W	9
Przepływ wody	m ³ /s	0.000156

Szczegółowy wynik dla "EN14825:2022" Umiarko Testowane zgodnie z:	FN14511	1:2022 i EN14825:2022
Strefa klimatyczna:		Umiarkowana
Zastosowanie temperatury:		średnia
Nazwa warunku:		E
Temperatura warunków:	°C	2
Częściowe obciążenie:	%	54%
Wybrany Tbivalent	°C	-7
Tdesign	°C	-10
Pdesign	kW	5.70
Zapotrzebowanie na ciepło:	kW	3.07
CR:		1.0
Osiągnięty minimalny przepływ:		Nie
Typ pomiaru:		Stan stabilny
Zintegrowana pompa obiegowa:		Tak
A A		
Uwzglednione korekty (wynik końcowy) Wydajność grzewcza	kW	3.134
COP		3.578
Pobór energii	kW	0.876
Zmierzone		
Wydajność grzewcza	kW	3.138
COP		3.564
Pobór energii	kW	0.880
Termometr suchy w temperaturze powietrza	°C	2.10
Termometr mokry w temperaturze powietrza	°C	1.01
Temperatura na wlocie	°C	35.01
Temperatura na wylocie	°C	41.85
Temperatura na wylocie Temperatura na wylocie (uśredniona w czasie)	°C	41.85
Pompa obiegowa		
Zmierzone: Statyczna różnica ciśnień, pompa cieczy	Pa	4813
Obliczona moc hydrauliczna	w	1
Obliczona wydajność globalna	η	0.12
Obliczona korekta wydajności	W	4
Obliczona korekta mocy	W	4
Przepływ wody	m ³ /s	0.000110

Szczegółowy wynik dla "EN14825:2022" Umiarkov	vana srednia (C) A i	//VV30	
Testowane zgodnie z:	EN14511:2022 i EN14825:2022 Umjarkowana		
Strefa klimatyczna:		średnia	
Zastosowanie temperatury:		C	
Nazwa warunku:			
Temperatura warunków:	°C	7	
Częściowe obciążenie:	%	35%	
Wybrany Tbivalent	°C	-7	
Tdesign	°C	-10	
Pdesign	kW	5.70	
Zapotrzebowanie na ciepło:	kW	1.97	
CR:		0.7	
Osiągnięty minimalny przepływ:		Tak	
Typ pomiaru:		Stan stabilny	
Zintegrowana pompa obiegowa:		Tak	
Uwzględnione korekty (wynik końcowy)	445	2 222	
Wydajność grzewcza	kW	2.938	
COP	600	4.741	
Pobór energii	kW	0.620	
Zmierzone	1447	2.045	
Wydajność grzewcza	kW	2.945	
COP	vii.	4.695	
Pobór energii	kW	0.627	
Termometr suchy w temperaturze powietrza	°C	7.00	
Termometr mokry w temperaturze powietrza	°C	6.00	
Temperatura na wlocie	°C	31.81	
	°C	38.11	
Temperatura na wylocie Temperatura na wylocie (uśredniona w czasie)	°C	36.04	
Temperatura na wylocie (usreuniona w czasie)	C	30.04	
Pompa obiegowa	0-	8300	
Zmierzone: Statyczna różnica ciśnień, pompa cieczy	Pa	1	
Obliczona moc hydrauliczna Obliczona wydajność globalna	w n	0.12	
Obliczona korekta wydajności	W	7	
Obliczona korekta mocy	W	8	
Przepływ wody	m ³ /s	0. 000112	

Szczegółowy wynik dla "EN14825:2022" Umia	Szczegółowy wynik dla "EN14825:2022" Umiarkowana średnia (D) A 12 /W30				
Testowane zgodnie z:	EN14511:2022 EN14825:2022				
Strefa klimatyczna:		Umiarkowana średnia			
Zastosowanie temperatury:		D			
Nazwa warunku:					
Temperatura warunków:	°C	12			
Częściowe obciążenie:	%	15%			
Wybrany Tbivalent	°C	-7			
Tdesign	°C	-10			
Pdesign	kW	5.70			
Zapotrzebowanie na ciepło:	kW	0.88			
CR:		0.2			
Osiągnięty minimalny przepływ:		Tak			
Typ pomiaru:		Stan stabilny			
Zintegrowana pompa obiegowa:		Tak			
Uwzglednione korekty (wynik końcowy)					
Wydajność grzewcza	kW	3.589			
COP	VC.	6.391			
Pobór energii	kW	0.562			
Zmierzone		2.502			
Wydajność grzewcza	kW	3.593			
COP	WALLS.	6.343			
Pobór energii	kW	0.566			
Termometr suchy w temperaturze powietrza	°C	12.00			
그렇게 하다 하다 하다는 사람들은 사람들이 가지 않는 사람들이 되었다면 하는데 되었다.	°C	10.90			
Termometr mokry w temperaturze powietrza	°C	28.11			
Temperatura na wlocie		35.79			
Temperatura na wylocie	°C	29.98			
Temperatura na wylocie (uśredniona w czasie)	°C	29.98			
Pompa obiegowa	9.	222			
Zmierzone: Statyczna różnica ciśnień, pompa cieczy	Pa	5273			
Obliczona moc hydrauliczna Obliczona wydajność globalna	w n	0.12			
Obliczona korekta wydajności	W	4			
Obliczona korekta mocy	W	5			
Przepływ wody	m³/s	0.000112			

Szczegółowy wynik dla "EN14825:2022" Umiarkov	vana średnia (E) A -	10 /W55	
Testowane zgodnie z:	owane zgodnie z: EN14511:2022 i EN14825:2		
Strefa klimatyczna:		Umiarkowana średnia	
Zastosowanie temperatury:		E	
Nazwa warunku:	42.0		
Temperatura warunków:	°C	-10	
Częściowe obciążenie:	%	100%	
Wybrany Tbivalent	°C	-7	
Tdesign	°C	-10	
Pdesign	kW	5.70	
Zapotrzebowanie na ciepło:	kW	5.70	
CR:		1.0	
Osiągnięty minimalny przepływ:		Nie	
Typ pomiaru:		Stan stabilny	
Zintegrowana pompa obiegowa:		Tak	
Uwzględnione korekty (wynik końcowy)	LW.	4.491	
Wydajność grzewcza	kW	1.829	
COP	TAM		
Pobór energii	kW	2.455	
Zmierzone	Taw.	4.496	
Wydajność grzewcza	kW	1.827	
COP	1444		
Pobór energii	kW	2.461	
Termometr suchy w temperaturze powietrza	°C	-10.03	
Termometr mokry w temperaturze powietrza	°C	-11.14	
Temperatura na wlocie	°C	46.99	
Temperatura na wylocie	°C	55.08	
Temperatura na wylocie (uśredniona w czasie)	°C	55.08	
Pompa obiegowa			
Zmierzone: Statyczna różnica ciśnień, pompa cieczy	Pa	5299	
Obliczona moc hydrauliczna Obliczona wydajność globalna	w n	0.12	
Obliczona korekta wydajności	w	5	
Obliczona korekta mocy	W	6	
Przepływ wody	m³/s	0.000135	

Szczegółowe wyniki testów SCOP przy częściowym obciążeniu – zastosowanie w niskich temperaturach – cieplejszy klimat – EN 14825

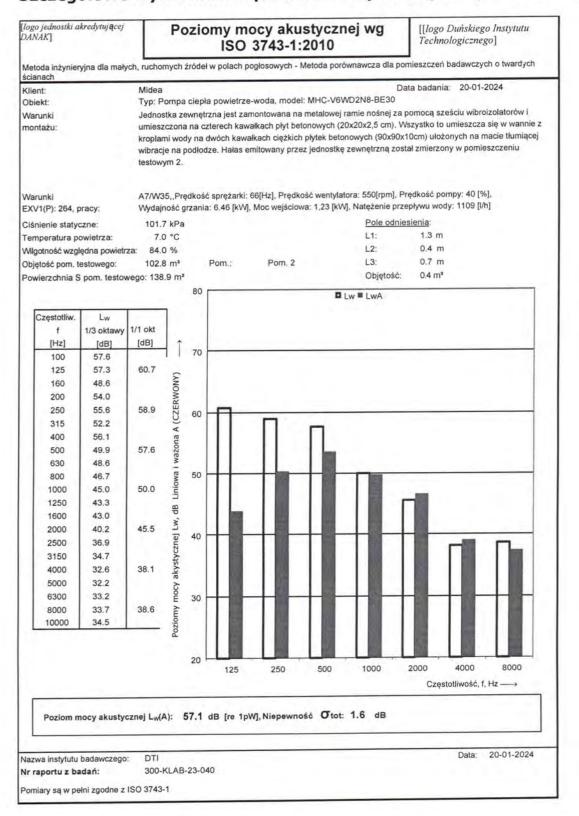
Szczegółowy wynik dla "EN14825:2022" Cieplejsz Testowane zgodnie z:	EN14511:	EN14511:2022 i EN14825:2022	
Strefa klimatyczna:	Cieplejsza		
Zastosowanie temperatury:		niska	
Nazwa warunku:		В	
Temperatura warunków:	°C	2	
Częściowe obciążenie:	%	100%	
Wybrany Tbivalent	°C	7	
Tdesign	°C	2	
Pdesign	kW	6.10	
Zapotrzebowanie na ciepło:	kW	6.10	
CR:		1.0	
Osiągnięty minimalny przepływ:		Nie	
Typ pomiaru:		Przejściowy	
Zintegrowana pompa obiegowa:		Tak	
Uwzglednione korekty (wynik końcowy)			
Wydajność grzewcza	kW	5.895	
COP		3.817	
Pobór energii	kW	1.544	
Zmierzone		2.474	
Wydajność grzewcza	kW	5.906	
COP		3.794	
Pobór energii	kW	1.556	
 Termometr suchy w temperaturze powietrza	°C	2.12	
Termometr mokry w temperaturze powietrza	°C	0.97	
	°C	30.05	
Temperatura na wlocie	°C	35.21	
Temperatura na wylocie	°C	35.21 35.21	
Temperatura na wylocie (uśredniona w czasie)	-0	33.21	
Pompa obiegowa	Da	5353	
Zmierzone: Statyczna różnica ciśnień, pompa cieczy	Pa	3333	
Obliczona moc hydrauliczna Obliczona wydajność globalna	w n	0.13	
Obliczona korekta wydajności	W	10	
Obliczona korekta mocy	W	12	

Szczegółowy wynik dla "EN14825:2022" Cieple	jszy klimat, niska temp	(C) A 7/W31
Testowane zgodnie z:	EN14511	:2022 EN14825:2022
Strefa klimatyczna:		Cieplejsza
Zastosowanie temperatury:		niska C
Nazwa warunku:		7.3
Temperatura warunków:	°C	7
Częściowe obciążenie:	%	64%
Wybrany Tbivalent	°C	7
Tdesign	°C	2
Pdesign	kW	6.10
Zapotrzebowanie na ciepło:	kW	3.92
CR:		1.0
Osiągnięty minimalny przepływ:		Nie
Typ pomiaru:		Stan stabilny
Zintegrowana pompa obiegowa:		Tak
Uwzglednione korekty (wynik końcowy)	Tank	3.994
Wydajność grzewcza	kW	6.027
COP	LAM	
Pobór energii	kW	0.663
Zmierzone	kW	3.997
Wydajność grzewcza	KVV	5.998
COP	kW	0.666
Pobór energii	KVV	0.000
Termometr suchy w temperaturze powietrza	°C	7.00
Termometr mokry w temperaturze powietrza	°C	6.00
Temperatura na wlocie	°C	26.01
Temperatura na wylocie	°C	31.07
Temperatura na wylocie (uśredniona w czasie)	°C	31.07
Pompa obiegowa		
Zmierzone: Statyczna różnica ciśnień, pompa cieczy	Pa	2369
Obliczona moc hydrauliczna	w	0
Obliczona wydajność globalna	n	0.12
Obliczona korekta wydajności	W W	3 4
Obliczona korekta mocy		
Przepływ wody	m³/s	0.000190

Szczegółowe wyniki testów SCOP przy częściowym obciążeniu – zastosowanie w niskich temperaturach – chłodniejszy klimat – EN 1482

Szczegółowy wynik dla "EN14825:2022" (Chłodniejszy klimat, niska te	mp. (A) A -7 /W30
Testowane zgodnie z: Strefa klimatyczna: Zastosowanie temperatury:	EN14511	:2022 i EN14825:2022 chłodniejsza niska
Nazwa warunku:		A
Temperatura warunków:	°C	-7
Częściowe obciążenie:	%	61%
Częściowe obciążenie. Wybrany Tbivalent	°C	-15
있는 10 CT (10 CT	°C	-22
Tdesign Pdesign	kW	5.60
Zapotrzebowanie na ciepło:	kW	3.39
CR:		1.0
Osiągnięty minimalny przepływ:		Nie
Typ pomiaru:		Stan stabilny
Zintegrowana pompa obiegowa:		Tak
Uwzględnione korekty (wynik końcowy) Wydajność grzewcza	kW	3,392
COP	NVV	3.736
Pobór energii	kW	0.908
Zmierzone	(34)	3.400
Wydajność grzewcza	kW	
COP	1344	3.708
Pobór energii	kW	0.917
= -	°C	-6.98
Termometr suchy w temperaturze powietrza	°C	-8.00
Termometr mokry w temperaturze powietrza		25.00
Temperatura na wlocie	°C	
Temperatura na wylocie	°C	29.92
Temperatura na wylocie (uśredniona w czasie)	°C	29.92
Pompa obiegowa		1,122
Zmierzone: Statyczna różnica ciśnień, pompa ciecz		6897
Obliczona moc hydrauliczna	W	0.13
Obliczona wydajność globalna	n W	0.13
Obliczona korekta wydajności	W	9
Obliczona korekta mocy	m³/s	0.000166
Przepływ wody	111-75	0.000100

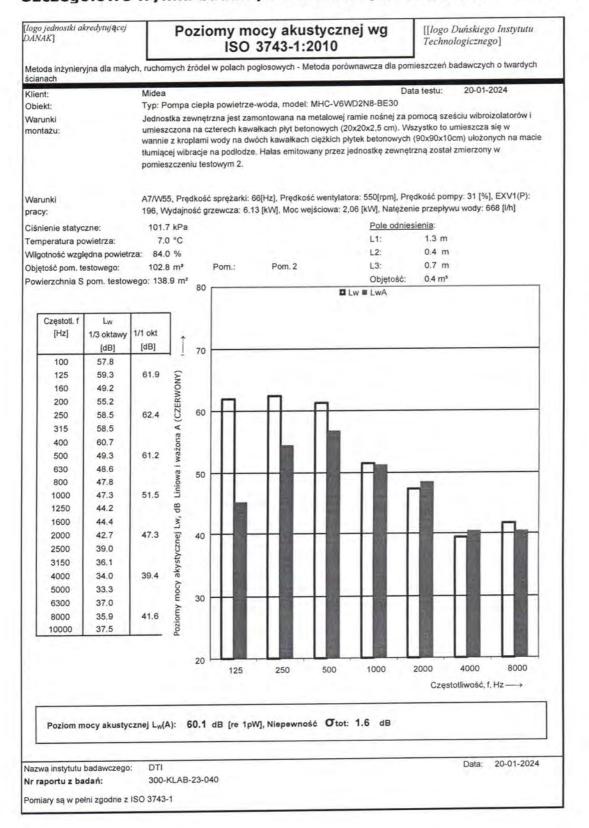
Szczegółowy wynik dla "EN14825:2022" Chłodnie Testowane zgodnie z:	EN14511:	2022 EN14825:2022
Strefa klimatyczna:	chłodniejsza	
Zastosowanie temperatury:		niska
Nazwa warunku:		FiG
Temperatura warunków:	°C	-15
Zzęściowe obciążenie:	%	82%
Vybrany Tbivalent	°C	-15
design	°C	-22
design	kW	5.60
apotrzebowanie na ciepło:	kW	4.57
R:		1.0
Osiągnięty minimalny przepływ:		Nie
Typ pomiaru:		Stan stabilny
Zintegrowana pompa obiegowa:		Tak
Jwzględnione korekty (wynik końcowy)	vad.	4.500
Vydajność grzewcza	kW	4.526
OP	NG:	2.365
obór energii	kW	1.913
mierzone	****	4.500
Vydajność grzewcza	kW	4.536
OP	7111	2.356
obór energii	kW	1,925
ermometr suchy w temperaturze powietrza	°C	-15.01
ermometr mokry w temperaturze powietrza	°C	-15.07
emperatura na wlocie	°C	26.99
emperatura na wylocie	°C	31.89
emperatura na wylocie (uśredniona w czasie)	°Č	31.89
awan ahingawa		
ompa obiegowa mierzone: Statyczna różnica ciśnień, pompa cieczy	Pa	6897
	w	2
bliczona moc hydrauliczna bliczona wydajność globalna	η	0.13
obliczona korekta wydajności	w	10
bliczona korekta mocy	W	12
Przepływ wody	m³/s	0.000222


Szczegółowe wyniki badań COP - niska temperatura - EN 14511

Szczegółowy wynik dla " EN 14511:2022" A7/W	35	
Testowane zgodnie z:		EN14511:2022
Osiągnięty minimalny przepływ:		Nie
Typ pomiaru:		Stan stabilny
Zintegrowana pompa obiegowa:		Tak
Uwzględnione korekty (wynik końcowy) Wydajność grzewcza	kW	6.462
COP		4.996
Pobór energii	kW	1.294
Zmierzone Wydajność grzewcza	kW	6.471
COP	KVV	4.961
Pobór energii	kW	1.304
Termometr suchy w temperaturze powietrza	°C	6.99
Termometr mokry w temperaturze powietrza	°C	6.00
Temperatura na wlocie	°C	30.04
Temperatura na wylocie	°C	35.09
Pompa obiegowa		
Zmierzone: Statyczna różnica ciśnień, pompa cieczy	Pa	4628
Obliczona moc hydrauliczna Obliczona wydajność globalna	w ŋ	0.13
Obliczona korekta wydajności	Ŵ	10
Obliczona korekta mocy	W	11
Przepływ wody	m³/s	0.000308

Szczegółowe wyniki badań COP - średnia temperatura - EN 14511

Szczegółowy wynik dla " EN 14511:2018" A7/W55		EN14E11.2010
Testowane zgodnie z:		EN14511:2018
Osiągnięty minimalny przepływ:	Nie	
Typ pomiaru:	Stan stabilny	
Zintegrowana pompa obiegowa:		Tak
Uwzglednione korekty (wynik końcowy) Wydajność grzewcza	kW	6.127 2.979
COP	kW	2.057
Pobór energii	KVV	2.037
Zmierzone Wydajność grzewcza	kW	6.133
COP	1847	2.972
Pobór energii	kW	2.063
Termometr suchy w temperaturze powietrza	°C	7.00
Termometr mokry w temperaturze powietrza	°C	6.00
Temperatura na wlocie	°C	47.00
Temperatura na wylocie	°C	54.99
Pompa obiegowa		
Zmierzone: Statyczna różnica ciśnień, pompa cieczy	Pa	4303
Obliczona moc hydrauliczna Obliczona wydajność globalna	w n	0.12
Obliczona korekta wydajności	W	6
Obliczona korekta mocy	W	7
Przepływ wody	m³/s	0.000186


Szczegółowe wyniki badań pomiaru mocy akustycznej – Test nr 1

Szczegółowe wyniki badań pomiaru mocy akustycznej - Test nr 2

[logo jednostki akredytującej Poziomy mocy akustycznej wg [[logo Duńskiego Instytutu ISO 3743-1:2010 Technologicznego] Metoda inżynieryjna dla małych, ruchomych źródeł w polach pogłosowych - Metoda porównawcza dla pomieszczeń badawczych o Data testu: Klient: Typ: Pompa ciepła powietrze-woda, mode: MHC-V6WD2N8-BE30 Obiekt: Jednostka zewnętrzna jest zamontowana na metalowej ramie nośnej za pomocą sześciu wibroizolatorów i Warunki umieszczona na czterech kawałkach płyt betonowych (20x20x2,5 cm). Wszystko to umieszcza się w montażu: wannie z kroplami wody na dwóch kawałkach ciężkich płytek betonowych (90x90x10cm) ułożonych na macie tłumiącej wibracje na podłodze. Hałas emitowany przez jednostkę zewnętrzną został zmierzony w pomieszczeniu testowym 2. A7/W35, Prędkość sprężarki: 30[Hz], Prędkość wentylatora: 400[rpm], Prędkość pompy: 34 [%], EXV1(P): Warunki 124, Wydajność grzewcza: 3.06 [kW], Moc wejściowa: 0,566 [kW], Natężenie przepływu wody: 525 [l/h] pracy: Pole odniesienia: 101.7 kPa Ciśnienie statyczne: 7.0 °C L1: 1.3 m Temperatura powietrza: 0.4 m Wilgotność względna powietrza: 84.0 % L2: Pom. 2 L3: 0.7 m Pom.: Objętość pom. testowego: 102.8 m³ Powierzchnia S pom. testowego: 138.9 m²
80 0.4 m³ Objetość: □ Lw ■ LwA Częstotl. f Lw 1/1 okt [Hz] 1/3 oktav [dB] [dB] 100 49.7 125 47.8 53.1 Liniowa i ważona A (CZERWONY) 160 47.0 200 44.3 250 44.9 49.2 60 44.2 315 400 43.1 46.1 48.6 500 630 40.5 50 38.1 800 42.3 36.8 1000 1250 37.6 34.5 dB 1600 Š 2000 31.8 37.1 40 2500 28.7 akystycznej 3150 26.7 4000 26.5 294 5000 mocy 6300 28.6 30 26.3 31.7 8000 Poziomy 10000 25.2 20 1000 2000 500 125 250 Czestotliwość, f, Hz ----Poziom mocy akustycznej Lw(A): 48.9 dB [re 1pW], Niepewność Otot: 1.6 dB Data: 20-01-2024 Nazwa instytutu badawczego: DTI Nr raportu z badań: 300-KLAB-23-040 Pomiary są w pełni zgodne z ISO 3743-1

Szczegółowe wyniki badań pomiaru mocy akustycznej - Test nr 3

Szczegółowe wyniki badań pomiaru mocy akustycznej – Test nr 4

[logo jednostki akredytującej DANAK] Poziomy mocy akustycznej wg [[logo Duńskiego Instytutu Technologicznego] ISO 3743-1:2010 Metoda inżynieryjna dla małych, ruchomych źródeł w polach pogłosowych - Metoda porównawcza dla pomieszczeń badawczych o twardych 20-01-2024 Data testu: Klient: Midea Obiekt: Typ: Pompa ciepła powietrze-woda, model: MHC-V6WD2N8-BE30 Jednostka zewnętrzna jest zamontowana na metalowej ramie nośnej za pomocą sześciu wibroizolatorów i Warunki umieszczona na czterech kawalkach płyt betonowych (20x20x2,5 cm). Wszystko to umieszcza się w montażu; wannie z kroplami wody na dwóch kawalkach ciężkich płytek betonowych (90x90x10cm) ułożonych na macie tłumiącej wibracje na podłodze. Hałas emitowany przez jednostkę zewnętrzną został zmierzony w A7/W55, Prędkość sprężarki: 38[Hz], Prędkość wentylatora: 400[rpm], Prędkość pompy: 31 [%], EXV1(P): Warunki 114, Wydajność grzewcza: 3.19 [kW], Moc wejściowa: 1,14 [kW], Natężenie przepływu wody: 405 [l/h] pracy: Ciśnienie statyczne: Pole odniesienia: 7.0 °C L1: 1.3 m Temperatura powietrza: Wilgotność względna powietrza: 84.0 % L2: 0.4 m L3: 0.7 m Objętość pom. testowego: 102.8 m³ 0.4 m³ Powierzchnia S pom. testowego: 138.9 m² Objętość: 80 □ Lw ■ LwA Częstotl. f Lw [Hz] 1/3 oktawy 1/1 okt [dB] [dB] 100 52.5 125 47.9 55.3 A (CZERWONY) 160 50.1 200 49.0 250 48.5 53.2 60 315 47.7 400 44.2 500 42.5 47.6 630 41.2 Liniowa 800 40.9 50 1000 42.0 46.0 1250 40.5 dB dB 1600 38.4 LW, 2000 33.2 39.9 akystycznej 40 2500 29.4 3150 26.9 4000 24.4 30.0 mocy 5000 23.5 6300 27.4 30 Poziomy 8000 26.0 32.1 28.3 10000 20 8000 250 1000 2000 4000 Częstotliwość, f, Hz-

Poziom mocy akustycznej Lw(A): 50.7 dB [re 1pW], Niepewność Otot: 1.6 dB

Nazwa instytutu badawczego: DT

Nr raportu z badań: 300-KLAB-23-040

Pomiary są w pełni zgodne z ISO 3743-1

Data: 20-01-2024

Test Reg. nr. 300

Załącznik 1

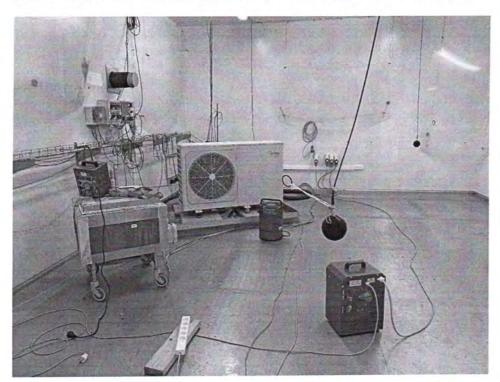
Specyfikacja jednostki

Typ urządzenia: Pompa ciepła powietrze-woda typu mono

Producent: Midea

Wymiary pompy ciepła: $0.4 \times 0.7 \times 1.3 \text{ m}$ (szer. x dł. x wys.)

Rok produkcji: brak.


Warunki pracy i środowisko

Warunki pracy badanego urządzenia odpowiadają wymaganiom klasy A.

Komora do badań akustycznych to pomieszczenie pogłosowe o twardych ścianach (103 m³, wyposażone w odpowiednie panele odblaskowe rozpraszające dźwięk. Komora do badań akustycznych spełnia wymagania normy ISO3743-1, stopień dokładności 2 (stopień inżynieryjny).

Pomiary średnich poziomów ciśnienia akustycznego w pasmach częstotliwości 1/3 oktawy przeprowadzane są przy użyciu trzech mikrofonów w komorze badawczej. Podczas pomiarów mikrofony przesuwają się w górę i w dół przez jeden metr po łuku ćwierćokręgu.

Poniższy rysunek przedstawia instalację urządzenia podczas testu, położenie mikrofonów, panele odblaskowe rozpraszające dźwięk i referencyjne źródło dźwięku.

Przyrządy pomiarowe

Nr ident.	Producent	Opis	Firma wzorcująca
100864	GRAS	Gras 40AE_26CA, mikrofon wolnego pola ½", sala 1	Norsonic A/S, Norwegia
100865	GRAS	Gras 40AE_26CA, mikrofon wolnego pola ½", sala 1	Norsonic A/S, Norwegia
100866	GRAS	Gras 40AE_26CA, mikrofon wolnego pola ½", sala 1	Norsonic A/S, Norwegia
100867*	GRAS	Gras 40AE_26CA, mikrofon wolnego pola ½", sala 2	Norsonic A/S, Norwegia
100868*	GRAS	Gras 40AE_26CA, mikrofon wolnego pola ½", sala 2	Norsonic A/S, Norwegia
100869*	GRAS	Gras 40AE_26CA, mikrofon wolnego pola ½", sala 2	Norsonic A/S, Norwegia
100870	GRAS	Gras 40AE_26CA, mikrofon wolnego pola ½", monitor dachowy	Norsonic A/S, Norwegia
100873*	Brüel & Kjær	Kalibrator akustyczny, Brüel & Kjær 4231	Element Metech, Dania
100859	Norsonic	Referencyjne źródło dźwięku, Norsonic Nor278 sala 1	RISE, Szwecja
100872*	Norsonic	Referencyjne źródło dźwięku, Norsonic Nor278 sala 2	RISE, Szwecja
100620*	Norsonic	Wielokanałowy system pomiarowy Nor850	Norsonic A/S, Norwegia

^{*} Przyrządy służą do rzeczywistych pomiarów w celu obliczenia wyników badań.

Pozostałe przyrządy służą do pomiarów kontrolnych. Wszystkie mikrofony wyposażone są w osłony przeciwwietrzne.

Procedura testowa

Pomiary poziomu mocy akustycznej emitowanej przez pompę ciepła przeprowadza się według poniższych norm:

- DS/EN 14511:2022
- EN 12102-1:2022
- ISO/EN 3743-1:2010

Podstawowa norma dotycząca pomiarów akustycznych DS/EN 3743-1 to metoda porównawcza wykorzystująca skalibrowane referencyjne źródło dźwięku. Wykonuje się dwie serie pomiarów ciśnienia akustycznego w dokładnie takich samych warunkach akustycznych, np. przy tych samych pozycjach mikrofonów, tej samej temperaturze i wilgotności powietrza. Skalibrowane poziomy mocy akustycznej są znane dla referencyjnego źródła dźwięku w każdym paśmie częstotliwości i są wykorzystywane do szacowania akustycznego współczynnika korekcji do obliczenia mocy akustycznej emitowanej przez badane urządzenie. Mierzone są poziomy hałasu tła i wykorzystywane do odpowiednich korekt.

Ostateczny całkowity poziom mocy akustycznej ważony A opiera się na pomiarach i obliczeniach na poziomach 1/3 oktawy, które następnie sumuje się na poziomach 1/1 oktawy. Całkowity poziom mocy akustycznej ważony A wyznaczany jest dla mierzonego zakresu czestotliwości od 100 Hz do 10 kHz.

Rzeczywiste pozycje mikrofonów i wartości korekcji są zapisywane w plikach danych połączonych z pełną dokumentacją projektową zgodnie z akredytacją DANAK.

Kompletny system pomiarowy jest udokumentowany i regularnie kalibrowany zgodnie z DANAK.

Szczegółowy opis metody pomiaru podany jest w języku duńskim w systemie baz danych jakości "QA Web" w Duńskim Instytucie Technologicznym, do którego dostęp ma DANAK.

Niepewność pomiaru

Niepewność poziomu mocy akustycznej w decybelach wyznaczana jest zgodnie z normą ISO 3743-1, równaniem $\overline{22} \sigma_{tot} = \sqrt{\sigma_{RO}^2 + \sigma_{omc}^2}$ gdzie:

- σ_{RO} jest odchyleniem standardowym powtarzalności metody
- σ_{omc} jest odchyleniem standardowym opisującym niepewność związaną z niestabilnością warunków pracy i montażu dla danego źródła hałasu podczas badania.

 σ_{RO} wyraża niepewność wyników badań dostarczonych przez różne akredytowane laboratoria badawcze ze względu na różne instrumentarium i wdrożenie procedury pomiarowej, a także różne charakterystyki promieniowania źródła hałasu podczas badania.

σ_{omc} wyraża niepewność związaną z niestabilnością warunków pracy i montażu dla danego źródła hałasu podczas badania. Warunki montażu i instalacji w dwóch komorach do badań akustycznych DTI są dobrze określone w procedurze testowej. Ewentualna niestabilność warunków pracy jest monitorowana i oceniana przed każdym badańiem hałasu.

Niepewność badania σ_{omc} oblicza się zgodnie ze wzorem C.1 załącznika C do normy ISO3743-1 i zazwyczaj wynosi ona poniżej 0,5 dB. Jednakże niepewność zaokrągla się w raporcie w górę do najbliższego przyrostu o 0,5 dB. Zgodnie z Tabelą C.1 (stopień dokładności 2), niepewność σ_{RO} ustalono na 1,5.

Niepewność rozszerzoną U oblicza się zgodnie z normą ISO 3743-1, równanie 23: $U=k \sigma_{tot}$ gdzie k = 2 dla 95% pewności.

PRZYKŁAD: σ_{tot} : $\sqrt{1.5^2 + 0.5^2} = 1.6 \ dB$ i $U(95\%) = 3.2 \ dB$

Uwaga: Niepewność rozszerzona nie uwzględnia odchylenia standardowego produkcji stosowanego w normie ISO4871 na potrzeby sporządzania deklaracji hałasu dla partii maszyn.

Załącznik 2

List autoryzacyjny

Niniejsza deklaracja zgodności wydana zostaje na wyłączną odpowiedzialność:

Nazwa producenta: GD Midea HEATING&VENTILATING Equipment Co.,Ltd.

Adres producenta: Midea Industrial City, Shunde, Foshan, Guangdong, Chiny

Oświadczamy, że produkty typu pompa ciepła, który wyprodukowaliśmy dla LENNOX Polska Sp. z o.o. są identyczne z naszymi następującymi modelami

Model firmy głównej (Midea).	Model Lennox	
mHC-v4w/D2N8-B	LV-HPM04-I5T	
mHC-v4w/D2N8-BE30	LV- HPM04EH30-I5T	
mHC-v6w/D2N8-B	LV- HPM06-I5T	
mHC-v6w/D2N8-BE30	LV- HPM06EH30-I5T	
mHC-v8w/D2N8-B	LV- HPM08-I5T	
mHC-v8w/D2N8-BE30	LV- HPM08EH30-I5T	
mHC-v8w/D2N8-BEP90	LV- HPM08EH90-I5T	
mHC-v10W/D2N8- B	LV- HPM 10-I5T	
mHC-v10W/D2N8- BE30	LV- HPM10EH30-I5T	
mHC-v10W/D2N8- BER90	LV- HPM10EH90-I5T	
mHC-v12W/D2N8- B	LV- HPM12-I5T	
MHC-V12W/D2N8-BE30	LV- HPM12EH30-I5T	
mHC-v12W/D2N8- BER90	LV- HPM12EH90-I5T	
mHC-v14W/D2N8- B	LV- HPM 14 -I5T	
mHC -v14w/D2N8- BE30	LV- HPM14EH30-I5T	
mHC-v14w/D2N8-BER90	LV- HPM14EH90-I5T	
mHc-v16w/D2N8- B	LV- HPM 26-I5T	
mHC-v16W/D2N8- BE30	LV - HPM16EH30-I5T	
mHC-v16W/D2N8- BER90	LV- HPM16EH90-I5T	
mHC -v12W/D2RN8 - B	LV - HPM 12-I5M	
mHC-v12W/D2RN8- BE30	LV - HPM12EH30-I5M	
mHC-v12W/D2RN8- BER90	LV- HPM12EH90-I5M	
mHC-v14W/D2RN8- B	LV- HPM 14-I5M	
mHC-v14W/D2RN8- BE30	LV- HPM14EH30-I5M	
mHC-v14W/D2RN8- BER90	LV- HPM14EH90-I5M	
mHC-v16W/D2RN8- B	LV - HPM 16-I5M	
mHC-v16W/D2RN8- BE30	LV- HPM16EH30-I5M	
mHC-v16W/D2RN8- BER90	LV- HPM16EH90-I5M	

Nazwa firmy: LENNOX Polska Sp. z o.o.

Nazwa handlowa: LENNOX

Adres: ul. Wybrzeże Gdyńskie 6A, 01-531 Warszawa, Polska

Uwaga: Niniejsza deklaracja traci ważność w przypadku wprowadzenia

zmian technicznych lub eksploatacyjnych bez zgody producenta.

Rok produkcji: 2020-2023

Data: 20/03/2024

Autoryzacja: [podpis nieczytelny]

[okrągła czerwona pieczęć w języku trzecim]

[dokument składa się z 43 ponumerowanych stron, u dołu każdej strony znajduje się logo ILAC MRA oraz jednostki akredytującej DANAK]

Ja, Małgorzata Kostrowska tłumacz przysięgły języka angielskiego (wpisana na listę tłumaczy przysięgłych Ministra Sprawiedliwości pod Nr TP/313/07), zaświadczam zgodność powyższego tłumaczenia z przedłożonym dokumentem sporządzonym w języku angielskim.

Nr rep.: 2125/2024 Data: 19.06.2024

